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Abstract. A matrix A is power-positive if some positive integer power of A is entrywise positive.

A sign pattern A is shown to require power-positivity if and only if either A or −A is nonnegative

and has a primitive digraph, or equivalently, either A or −A requires eventual positivity. A sign

pattern A is shown to be potentially power-positive if and only if A or −A is potentially eventually

positive.
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1. Introduction. A matrix A ∈ R
n×n is called power-positive [2, 10] if there

is a positive integer k such that Ak is entrywise positive (Ak > 0). Note that if A

is a power-positive matrix, then −A is also power-positive, because Ak > 0 implies

(−A)2k > 0. If there is an odd positive integer k such that Ak > 0, then A is

called power-positive of odd exponent. Power-positive matrices have applications to

the study of stability of competitive systems in economics; see, e.g., [7, 8, 9]. A real

square matrix A is eventually positive if there exists a positive integer k0 such that

Ak > 0 for all k ≥ k0. An eventually positive matrix and its negative are both

obviously power-positive.

A sign pattern matrix (or sign pattern) is a matrix having entries in {+,−, 0}.

For a real matrix A, sgn(A) is the sign pattern having entries that are the signs

of the corresponding entries in A. If A is an n × n sign pattern, the sign pattern

class (or qualitative class) of A, denoted Q(A), is the set of all A ∈ R
n×n such that
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sgn(A) = A.

If P is a property of a real matrix, then a sign pattern A requires P if every real

matrix A ∈ Q(A) has property P , and A allows P or is potentially P if there is some

A ∈ Q(A) that has property P . Sign patterns that require eventual positivity have

been characterized in [4], and sign patterns that allow eventual positivity have been

studied in [1]. Here we characterize patterns that require power-positivity (Theorem

2.6 and Corollary 2.7) and show that a sign pattern A allows power-positivity if and

only if A or −A allows eventual positivity (Theorem 3.1).

1.1. Definitions and notation. Let A = [αij ] and Â = [α̂ij ] be sign patterns.

If αij 6= 0 implies αij = α̂ij , then A is a subpattern of Â. For a sign pattern A = [αij ],

the positive part of A is A+ = [α+
ij ] where α

+
ij is + if αij = + and 0 if αij = 0 or αij =

−; the negative part of A is defined analogously (see [1]). Note that A− = (−A)+. We

use [−] (respectively, [+]) to denote a (rectangular) sign pattern consisting entirely

of negative (respectively, positive) entries. The characteristic matrix CA of the sign

pattern A is the (0, 1,−1)-matrix obtained from A by replacing + by 1 and − by −1.

For an n× n sign pattern A = [αij ], the signed digraph of A is

Γ(A) = ({1, . . . , n} , {(i, j) : αij 6= 0})

where an arc (i, j) is positive (respectively, negative) if αij = + (respectively, −).

Conversely, for a signed digraph Γ on the vertices {1, . . . , n}, the sign pattern of Γ

is sgn(Γ) = [sij ] where sij = + (respectively, −) if there is a positive (respectively,

negative) arc from vertex i to vertex j, and sij = 0 otherwise. There is a one-to-

one correspondence between n× n sign patterns and signed digraphs on the vertices

{1, . . . , n} and we adopt some sign pattern notation for signed digraphs. For example,

Q(Γ) = Q(sgn(Γ)) and CΓ = Csgn(Γ).

A signed digraph Γ is called primitive if it is strongly connected and the greatest

common divisor of the lengths of its cycles is 1. This definition applies the standard

definition of “primitive” for a digraph that is not signed to a signed digraph by

ignoring the signs. Clearly for a sign pattern A, Γ(A) is primitive if and only if

Γ(−A) is primitive.

A signed subdigraph of a signed digraph is a subdigraph in which the arcs retain

the signs of the original signed digraph. Let Γ′ be a signed digraph on n vertices,

and let Γ be a signed subdigraph of Γ′ on k vertices. Without loss of generality

(by relabeling the vertices of Γ′) assume that the vertices of Γ are {1, . . . , k}. For

A = [aij ] ∈ Q(Γ), define the n × n matrix B = [bij ] by bij = aij if (i, j) ∈ Γ′, and

0 otherwise. Then we call B the Γ′-embedding of A. Note that the sign pattern

B = sgn(B) is a subpattern of sgn(Γ′). When a Γ′-embedding is used in Section
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2, Γ′ is the signed digraph Γ(A) of a sign pattern A, and we assume the necessary

relabeling has been done.

1.2. Power-positive and eventually positive matrices. This subsection

contains some known results about power-positive matrices and their applications.

Any matrix in the sign pattern class of the sign pattern in Example 3.4 below il-

lustrates the well known fact that there exist power-positive matrices that are not

eventually positive.

An eigenvalue λ0 of a matrix A is strictly dominant if |λ0| = ρ(A) and for every

eigenvalue λ 6= λ0, |λ| < |λ0|. Every power-positive matrix A has a unique real

simple strictly dominant eigenvalue λ0 having positive left and right eigenvectors

[10]. Furthermore, if A is power-positive of odd exponent, then λ0 = ρ(A); otherwise,

λ0 may be negative. For example, any negative matrix A is power-positive (with only

the even powers being positive), and in this case λ0 = −ρ(A). The next theorem can

be deduced from [2] and the discussions on pages 43-47 in [10].

Theorem 1.1. [2, Theorem 3] If A is a power-positive matrix, then either A or

−A has a positive simple strictly dominant eigenvalue having positive left and right

eigenvectors.

Theorem 1.2. [6, p. 329] The matrix A is eventually positive if and only if A

is power-positive of odd exponent.

Theorem 1.3. [6, Theorem 1] The matrix A is eventually positive if and only

if A has a positive simple strictly dominant eigenvalue having positive left and right

eigenvectors.

Corollary 1.4. A is a power-positive matrix if and only if either A or −A is

eventually positive.

Remark 1.5. Note that Corollary 1.4 is not in general true if positive is replaced

by nonnegative. For example, the matrix A =

[

1 0

0 −1

]

is a power-nonnegative matrix

since A2 ≥ 0, but neither A nor −A is eventually nonnegative.

In economics, power-positive matrices arise in the context of stability of com-

petitive systems. Let A = B − sI, s > 0. A system of dynamic equations [9] such

as

dx

dt
= Ax, x(0) = x0 (1.1)

can be interpreted as a system of price adjustment equations of competitive markets

in a general equilibrium analysis.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 19, pp. 121-128, February 2010

http://math.technion.ac.il/iic/ela



ELA

124 Sign Patterns that Require or Allow Power-positivity

Theorem 1.6. [9, Theorem 1] The competitive system (1.1) is dynamically stable

if and only if s > ρ(B) and B satisfies one of the following conditions:

1. B is a power-positive matrix of odd exponent, or

2. B is a power-positive matrix and the entries of a row or of a column of B

are all nonnegative.

Note that the first of the two conditions on B given in Theorem 1.6 is equivalent to

the eventually positivity of B, while the second implies that B is eventually positive.

Furthermore, the matrix −A = sI − B in such a dynamically stable system is a

pseudo-M -matrix as defined in [6].

2. Sign patterns that require power-positivity. In [4] it is shown that A

requires eventual positivity if and only if A is nonnegative and Γ(A) is primitive.

In this section we use similar perturbation techniques to show that a sign pattern

A requires power-positivity if and only either A or −A is nonnegative and Γ(A) is

primitive.

Observation 2.1. Let A be an n × n sign pattern, Γ a signed subdigraph of

Γ(A), A ∈ Q(Γ) and B the Γ(A)-embedding of A. Then the nonzero eigenvalues of

B are the nonzero eigenvalues of A, and the eigenvectors for the nonzero eigenvalues

of B are the eigenvectors of the corresponding eigenvalues of A, suitably embedded.

It is well known that for any matrix A ∈ R
n×n, the eigenvalues of A are contin-

uous functions of the entries of A. For a simple eigenvalue, the same is true of the

eigenvector (see, for example, [5, p. 323]).

Lemma 2.2. Let A be an n× n sign pattern, Γ a signed subdigraph of Γ(A) and

A ∈ Q(Γ).

1. If every nonzero eigenvalue of A is simple and A does not have a nonnegative

eigenvector, then A does not require power-positivity.

2. If A has a simple strictly dominant eigenvalue ρ(A) that does not have a

nonnegative eigenvector, then A does not require power-positivity.

Proof. Let B be the Γ(A)-embedding of A. In either case, by Observation 2.1, the

matrix B retains the property of not having a nonnegative eigenvector for the relevant

eigenvalue(s). Let B(ε) = B + εCA, where ε is chosen positive so that B(ε) ∈ Q(A),

and sufficiently small so that for every simple eigenvalue of B, the corresponding

eigenvalue and eigenvector of B(ε) are small perturbations of the eigenvalue and

eigenvector of B. In case 2, the spectral radius of B(ε) is a perturbation of ρ(A)

because ρ(A) is a strictly dominant eigenvalue. In either case, by continuity, the

spectral radius of B(ε) is a perturbation of one of the (nonzero) simple eigenvalues

of A that did not have a nonnegative eigenvector. Thus the matrix B(ε) retains the
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property of not having a nonnegative eigenvector for its spectral radius, showing (by

Theorem 1.1) that B(ε) is not power-positive.

Lemma 2.3. Let A be an n× n sign pattern. If Γ(A) has a signed subdigraph Γ

that is a cycle having both a positive and a negative arc, then A does not require

power-positivity.

Proof. Suppose that the cycle Γ is of length k and has a positive arc (p, q) and a

negative arc (r, s). Note that the characteristic polynomial of CΓ is pCΓ(x) = xk ± 1,

so the eigenvalues of CΓ are all nonzero and simple. Furthermore, no eigenvector can

have a zero coordinate, so any nonnegative eigenvector must be positive. Suppose

that CΓ has a positive eigenvector x = [xi] corresponding to an eigenvalue λ. Then

the equation CΓx = λx gives

xq = λxp and − xs = λxr .

As xp, xq > 0, it follows that λ > 0, but on the other hand, xr, xs > 0 implies that λ <

0, a contradiction. Thus, CΓ cannot have a nonnegative eigenvector corresponding

to a nonzero eigenvalue. The result then follows from the first statement in Lemma

2.2.

Lemma 2.4. Let A be an n × n sign pattern. If Γ(A) contains a figure-eight

signed subdigraph Γ(s, t) = Γs ∪ Γt (see Figure 2.1), where Γs is a cycle of length

s ≥ 2 with all arcs signed positively and Γt is a cycle of length t ≥ 2 with all arcs

signed negatively, and Γs and Γt intersect in a single vertex, then A does not require

power-positivity.

Fig. 2.1. The figure-eight Γ(5, 6)

Proof. Without loss of generality, let 2 ≤ s ≤ t. If s < t or s = t is even, the

characteristic polynomial of CΓ(s,t) is

pCΓ(s,t)
(x) = xs−1g(x), where g(x) = xt − xt−s + (−1)t+1.

Note that g(x) and g′(x) have no common roots, so every nonzero eigenvalue of CΓ(s,t)

is simple. Furthermore, as in the proof of Lemma 2.3, the cyclic nature of the digraph

Γ prevents any zeros in an eigenvector for a nonzero eigenvalue of CΓ(s,t), and the

opposite signs prevent a positive eigenvector for a nonzero eigenvalue. The result now

follows from the first statement in Lemma 2.2.
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For the case s = t, where s is odd, let A ∈ Q(Γ(s, s)) be obtained from CΓ(s,s) by

replacing one entry equal to 1 (in the positive cycle) by 2. Then pA(x) = xs−1(xs−1)

and the result follows by the same argument as above.

Corollary 2.5. If A requires power-positivity, then all off-diagonal entries are

nonnegative, or all off-diagonal entries are nonpositive.

Proof. If A requires power-positivity, then Γ(A) is strongly connected and thus

every arc in Γ(A) lies in a cycle. Suppose that A has both a positive and a negative

off-diagonal entry. Then Γ(A) has a positive and a negative arc that lie on the same

cycle, or Γ(A) has two different cycles with arcs of opposite sign that intersect at a

vertex. Lemma 2.3 or Lemma 2.4 implies that A does not require power-positivity.

Theorem 2.6. The sign pattern A requires power-positivity if and only if either

A or −A is nonnegative and Γ(A) is primitive.

Proof. Assume that A requires power-positivity. Then Γ(A) is strongly con-

nected. By Corollary 2.5, the off-diagonal entries are either all nonnegative or all

nonpositive. Suppose that there is a diagonal entry of opposite sign from the nonzero

off-diagonal entries. Without loss of generality, suppose that the off-diagonal entries

are nonpositive and that the (1, 1) entry of A is +. Let Γ be a signed subdigraph of

Γ(A) consisting of a cycle of length at least two that includes vertex 1 and the loop

at vertex 1. Consider A = CΓ + 2E11 ∈ Q(Γ), where E11 has (1, 1) entry equal to

one and zeros elsewhere. By Gershgorin’s Theorem applied to A, there is a unique

(necessarily real) eigenvalue ρ in the unit disk centered at 3, and all other eigenvalues

are in the unit disk centered at the origin, so ρ = ρ(A) is simple and strictly domi-

nant. Furthermore, no eigenvector of A can have a zero coordinate. But the negative

cycle entries do not allow a positive eigenvector for a positive eigenvalue. Thus by the

second statement of Lemma 2.2, A does not require power-positivity, a contradiction.

Thus either A or −A is nonnegative, and so Γ(A) must be primitive [3, Theorem

3.4.4]. The converse is clear.

Corollary 2.7. The sign pattern A requires power-positivity if and only if either

A or −A requires eventual positivity.

Proof. The necessity follows from Theorem 2.6 and [4, Theorem 2.3] and the

sufficiency is clear.

3. Sign patterns that allow power-positivity. A square sign pattern A is

called potentially power-positive (PPP) if there exists an A ∈ Q(A) that is power-

positive. If A ∈ Q(A) exists such that A is eventually positive, then the sign pattern

A is called potentially eventually positive (PEP) [1]. Note that A is PPP if and

only if −A is PPP. The following characterization of PPP sign patterns follows from

Corollary 1.4.
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Theorem 3.1. The sign pattern A is potentially power-positive if and only if A

or −A is potentially eventually positive.

Recall that A+ is the positive part of A. Theorem 2.1 of [1] and Theorem 3.1

above give the following result.

Theorem 3.2. If Γ(A+) or Γ(A−) is primitive, then A is potentially power-

positive.

We next provide examples, including a sign pattern A such that both A and −A

are PPP, sign patterns A that are PPP but not PEP, and an irreducible sign pattern

that is not PPP.

Example 3.3. The sign pattern A =





+ + −

− 0 +

+ − −



 is PPP, as is −A, because

both Γ(A+) and Γ(A−) are primitive.

Example 3.4. The block sign pattern

A =

[

[−] [−]

[−] [+]

]

,

(where the diagonal blocks are square and the diagonal [−] block is nonempty) is

PPP, because Γ(A−) is primitive. However, A is clearly not PEP because the first

row does not have a + [6, p. 327].

Example 3.5. A square sign pattern A = [αij ] is a Z sign pattern if αij 6= + for

all i 6= j. An n×n Z sign pattern A with n ≥ 2 cannot be PEP [1, Theorem 5.1], but

if Γ(A−) is primitive, then by Corollary 3.2, A is PPP. For n ≥ 3, if A is an n × n

Z sign pattern having every off-diagonal entry nonzero, then Γ(A−) is primitive and

thus A is PPP.

Note that when n = 2, A =

[

+ −

− +

]

is not PPP, as in the next example, where

Theorem 3.1 is used to show that a generalization of this sign pattern is not PPP.

Example 3.6. Let

A =











[+] [−] [+] . . .

[−] [+] [−] . . .

[+] [−] [+] . . .
...

...
...

. . .











,

where the diagonal blocks are square and there are at least 2 diagonal blocks. Then

no subpattern of A is PPP because by [1, Theorems 5.3 and 3.1], no subpattern of A

or −A is PEP. Thus by Theorem 3.1, no subpattern of A is PPP.
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