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ON SYMMETRIC MATRICES WITH EXACTLY ONE POSITIVE

EIGENVALUE∗
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Abstract. We present a class of nonsingular matrices, the MC′-matrices, and prove that the

class of symmetric MC-matrices introduced by Shen, Huang and Jing [On inclusion and exclusion

intervals for the real eigenvalues of real matrices. SIAM J. Matrix Anal. Appl., 31:816-830, 2009]

and the class of symmetric MC′-matrices are both subsets of the class of symmetric matrices with

exactly one positive eigenvalue. Some other sufficient conditions for a symmetric matrix to have

exactly one positive eigenvalue are derived.
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1. Introduction. The class of symmetric real matrices having exactly one pos-

itive eigenvalue will be denoted by B. The class of positive matrices belonging to

B will be denoted by A ; see [1]. Clearly, A ⊆ B. These classes of matrices play

important roles in many areas such as mathematical programming, matrix theory,

numerical analysis, interpolation of scattered data and statistics; see, e.g., [1, 5, 7].

It was shown in [1] that a symmetric positive matrix A ∈ A if and only if the

(unique) doubly stochastic matrix of the form DTAD is conditionally negative defi-

nite, where D is a positive diagonal matrix. In [7], Peña presented several properties

of a symmetric positive matrix with exactly one positive eigenvalue. In particular,

the author first obtained an equivalent condition for A ∈ A , i.e., a symmetric positive

matrix A ∈ A if and only if A has the LDLT decomposition:

A = LDLT ,

where L is a unit lower triangular matrix, and D = diag(d11, d22, · · · , dnn) with

d11 > 0 and dii < 0, i = 2, · · · , n. Secondly, the class of symmetric positive stochastic
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C-matrices was proved to be a subset of A . Finally, the growth factor of Gaussian

elimination with a given pivoting strategy applied to A ∈ A was analyzed, and a

stable test to check whether a matrix belongs to A was established.

The class of C-matrices mentioned above was first defined by Peña in [6]. A

matrix A ∈ R
n×n with positive row sums is said to be a C-matrix if all its off-diagonal

elements are bounded below by the corresponding row means; see [6]. Recently, Shen,

Huang and Jing [8] presented a class of nonsingular matrices-MC-matrices, which is

a generalization of the class of C-matrices.

In this paper, we show that every symmetric MC-matrix has exactly one positive

eigenvalue. A new class of nonsingular matrices, the MC′-matrices, is introduced.

The class of symmetric MC′-matrices is proved to be the subset of B. Moreover,

some other sufficient conditions for A ∈ B are derived.

The remainder of the paper is organized as follows. After introducing some no-

tation and definitions in Section 2, we shall present some subclasses of B and some

sufficient conditions for a matrix belonging to B in Section 3.

2. Notation and definitions. Let A = (aij), B = (bij) ∈ R
n×n, and let k be

a positive integer. Then we denote by I the identity matrix; AT the transpose of A;

ρ(A) the spectral radius of A; λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A) the eigenvalues of A if

A is symmetric; νk the row vector (1, 2, · · · , k);

A[νk] =







a11 a12 · · · a1k
...

...
...

...

ak1 ak2 · · · akk







the k × k leading principle submatrix of A. We write A ≥ B (respectively, A > B) if

aij ≥ bij (respectively, aij > bij) for i, j = 1, 2, · · · , n.

Definition 2.1. Let A = (aij) ∈ R
n×n. Then

1. ([2]) A is said to be a positive (respectively, nonnegative) matrix if aij > 0

(respectively, aij ≥ 0) for all i, j = 1, 2, · · · , n.

2. ([9]) The nonsingular matrix A is said to be an M -matrix if all its off-diagonal

entries are nonpositive, and A−1 is nonnegative.

Given a matrix A = (aij) ∈ R
n×n, we define

s+i (A) := max {0,min{aij |j 6= i}} , i = 1, 2, · · · , n.

The matrix A can be decomposed into

A = C+(A) + E+(A),

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 158-167, February 2010

http://math.technion.ac.il/iic/ela



ELA

160 S.Q. Shen and T.Z. Huang

where

C+(A) =







a11 − s+1 (A) a12 − s+1 (A) · · · a1n − s+1 (A)
...

...
...

...

an1 − s+n (A) an2 − s+n (A) · · · ann − s+n (A)






,

E+(A) =







s+1 (A) s+1 (A) · · · s+1 (A)
...

...
...

...

s+n (A) s+n (A) · · · s+n (A)






.

From Proposition 2.3 in [6], A is a C-matrix if and only if all its row sums are positive,

and −C+(A) is a strictly diagonally dominant M -matrix (see [2]).

Definition 2.2 ([8]). A matrix A = (aij) ∈ R
n×n with positive row sums is

called an MC-matrix if all its off-diagonal elements are positive, and −C+(A) is an

M -matrix.

Obviously, any C-matrix must be an MC-matrix. For a given MC-matrix A ∈

R
n×n, from Theorem 2.1 in [8] we have (−1)n−1 det(A) > 0.

3. MC-matrices, MC′-matrices, and B. This section is devoted to giving

some subclasses of B. The following lemmas are needed.

Lemma 3.1. Let A ∈ R
n×n be an MC-matrix, and let D ∈ R

n×n be a positive

diagonal matrix. Then DA is an MC-matrix.

Proof. By A = C+(A) + E+(A), it is easy to get

DA = DC+(A) +DE+(A) = C+(DA) + E+(DA). (3.1)

Clearly, −C+(DA) = −DC+(A) is an M -matrix. Since all row sums and all off-

diagonal entries of DA are still positive, from (3.1) and Definition 2.2, DA is an

MC-matrix.

The following result is a direct consequence of applying the Geršgorin disc theo-

rem (see, e.g., [3]).

Lemma 3.2. Let A = (aij) ∈ R
n×n with row sums

n
∑

k=1

aik = r > 0, i = 1, 2, · · · , n,

let all its off-diagonal elements be nonnegative, and let λ be any positive eigenvalue

of A. Then r is an eigenvalue of A, and λ ≤ r.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 158-167, February 2010

http://math.technion.ac.il/iic/ela



ELA

Matrices with Exactly One Positive Eigenvalue 161

Theorem 3.3. Let A = (aij) ∈ R
n×n be a symmetric MC-matrix. Then A ∈ B.

Proof. Setting

ri =

n
∑

k=1

aik, i = 1, 2, · · · , n and D = diag(r1, r2, · · · , rn),

from Definition 2.2, D is a positive diagonal matrix. By Lemma 3.1, D−1A is also an

MC-matrix, and all its row sums are 1. Since D−1A is similar to D− 1

2AD− 1

2 which

is congruence to A, by Sylvester’s law of inertia (Theorem 4.5.8 in [3]), we need only

to prove that D−1A has exactly one positive eigenvalue. In fact, 1 is an eigenvalue

of D−1A with algebraic multiplicity 1. Assume that λ different from 1 is a positive

eigenvalue of A. Then by Lemma 3.2 we have 0 < λ < 1. Obviously, all row sums

of D−1A − λI are 1 − λ > 0, and, taking into account Lemma 3.1 and [2, Lemma

6.4.1], −C+(D−1A− λI) is an M -matrix. Hence, D−1A− λI is an MC-matrix, and

then nonsingular. This contradicts that λ is an eigenvalue of D−1A. Thus, D−1A has

exactly one positive eigenvalue 1. The proof is completed.

We now define a new class of nonsingular matrices.

Definition 3.4. A matrix A = (aij) ∈ R
n×n with at least one positive diagonal

element is called an MC′-matrix if all its off-diagonal elements are positive, and

−C+(A) is an M -matrix.

For an MC′-matrix A = (aij) ∈ R
n×n, similar to the proof of Theorem 2.1 in

[8], we can deduce (−1)n−1 det(A) > 0. For the reader’s convenience, we provide the

following simple proof: From the proof of Theorem 2.1 in [8], it follows that

det(−A) = det(−C+(A))(1 − xT (−C+(A))−1y), (3.2)

where

x = (1, 1, · · · , 1)T , y = (s+1 (A), s
+
2 (A), · · · , s

+
n (A))

T .

Let (−C+(A))−1y := z = (zi). Then y = −C+(A)z, and then

s+i (A)(z1 + z2 + · · ·+ zn) = s+i (A) +

n
∑

k=1

aikzk, i = 1, 2, · · · , n. (3.3)

Since z is a positive vector and, by the definition of an MC′-matrix, there must exist

1 ≤ j ≤ n such that ajj > 0, we derive
∑n

k=1 ajkzk > 0, which by (3.3) implies

xT (−C+(A))−1y = z1 + z2 + · · ·+ zn =
s+j (A) +

∑n

k=1
ajkzk

s+j (A)
> 1.

From (3.2) we can get that (−1)n−1 det(A) > 0.
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Remark 3.5. We remark that a positive matrix is an MC′-matrix if and only

if it is an MC-matrix. But the classes of symmetric MC′-matrices and symmetric

MC-matrices do not contain each other. For example, let

A1 =

(

−8 4

2 1

)

and A2 =

(

−2 4

2 −1

)

.

Then, by simple computations, A1 is an MC′-matrix, but not an MC-matrix. A2 is

an MC-matrix, but not an MC′-matrix.

Lemma 3.6. Let A = (aij) ∈ R
n×n, and let P ∈ R

n×n be a permutation matrix.

Then PTAP is an MC′-matrix if and only if A is an MC′-matrix.

Proof. The matrix PTAP can be decomposed into

PTAP = PTC+(A)P + PTE+(A)P = C+(PTAP ) + E+(PTAP ). (3.4)

It is clear that

−C+(PTAP ) = −PTC+(A)P

is an M -matrix if and only if -C+(A) is an M -matrix. By (3.4) and Definition 3.4

the conclusion of the lemma holds.

Lemma 3.7. Let A = (aij) ∈ R
n×n be an MC′-matrix with a11 > 0. Then any

k × k leading principle submatrix A[νk] of A is an MC′-matrix.

Proof. The matrices A and A[νk] can be decomposed into

A = C+(A) + E+(A) and A[νk] = C+(A[νk]) + E+(A[νk]).

We have

s+i (A) ≤ s+i (A[νk]), i = 1, 2, · · · , k,

which implies

−
(

C+(A)
)

[νk] ≤ −C+(A[νk]).

Since −C+(A) is an M -matrix, it is easy to get that − (C+(A)) [νk] is an M -matrix.

So, from Exercise 6.5.1 in [2], −C+(A[νk]) is also an M -matrix, which, together with

all off-diagonal elements of A[νk] being positive and a11 > 0, implies that A[νk] is an

MC′-matrix.

Lemma 3.8. Let A = (aij) ∈ R
n×n be symmetric, and let

(−1)k−1 det(A[νk]) > 0 for all k = 1, 2, · · · , n.
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Then A ∈ B.

Proof. Clearly, a11 > 0. By the interlacing theorem for eigenvalues of Hermitian

matrices (see Theorem 4.3.8 in [3]), we have

λ1(A[ν2]) ≤ a11 ≤ λ2(A[ν2]),

which together with det(A[ν2]) < 0 implies

λ1(A[ν2]) < 0 and λ2(A[ν2]) > 0. (3.5)

Similarly, it can be seen that

λ1(A[ν3]) ≤ λ1(A[ν2]) ≤ λ2(A[ν3]) ≤ λ2(A[ν2]) ≤ λ3(A[ν3]),

which together with det(A[ν3]) > 0 and (3.5) lead to

λ1(A[ν3]) < 0, λ2(A[ν3]) < 0 and λ3(A[ν3]) > 0.

Thus, a similar induction argument completes the proof of the lemma.

Remark 3.9. It was shown in [1, Theorem 4.4.6] that a symmetric positive

matrix A = (aij) ∈ R
n×n belongs to A if and only if, for any k×k principle submatrix

B of A, (−1)k−1 det(B) > 0 for all k = 1, 2, · · · , n. Thus, Lemma 3.8 provides a

weaker condition such that a symmetric matrix has exactly one positive eigenvalue.

The following theorem shows that the class of symmetricMC′-matrices is a subset

of B.

Theorem 3.10. Let A = (aij) ∈ R
n×n be a symmetric MC′-matrix. Then

A ∈ B.

Proof. There exists a permutation matrix P such that the first diagonal element

of PTAP is positive. From Lemma 3.6, PTAP is also an MC′-matrix. By Lemma

3.7, any k × k leading principle submatrix of PTAP is an MC′-matrix, and hence

(−1)k−1 det
(

(PTAP )[νk]
)

> 0, k = 1, 2, · · · , n.

Thus, due to Lemma 3.8, we have PTAP ∈ B, and then A ∈ B.

Remark 3.11. Compared with Proposition 4.3 and Corollary 4.4 in [7], Theo-

rems 3.3 and 3.10 establish two wider classes of matrices with exactly one positive

eigenvalue.

Remark 3.12. Assume that A ∈ A . Then Theorem 4.4.6 in [1] implies that any

principle submatrix of A also belongs to A . From Lemma 3.7, we can see that any

principle submatrix with at least one positive diagonal element of an MC′-matrix is
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also an MC′-matrix. However, we have not similar conclusions for MC-matrices. For

example, let

A =





−1 1 2

3 −1 1

1 2 −2



 .

Then A is an MC-matrix. But all 1× 1 and 2× 2 principle submatrices of A are not

MC-matrices.

The following theorems establish some sufficient conditions for a matrix in B.

Theorem 3.13. Let A = (aij) ∈ R
n×n be symmetric, let all row sums of A be

positive, and let A be decomposed into

A = D+(A) + F+(A),

where

D+(A) =







a11 − s11 a12 − s12 · · · a1n − s1n
...

...
...

...

an1 − sn1 an2 − sn2 · · · ann − snn






,

F+(A) =







s11 s12 · · · s1n
...

...
...

...

sn1 sn2 · · · snn






.

If F+(A) ∈ A , and −D+(A) is an M -matrix, then A ∈ B.

Proof. From Exercise 6.2.6 in [2], −D+(A) is positive definite. By Sylvester’s law

of inertia we need only prove

(−D+(A))−
1

2A(−D+(A))−
1

2 = −I + (−D+(A))−
1

2F+(A)(−D+(A))−
1

2 ∈ B. (3.6)

In fact, by F+(A) ∈ A we get that

(−D+(A))−
1

2F+(A)(−D+(A))−
1

2 ∈ B.

Since (−D+(A))−
1

2F+(A)(−D+(A))−
1

2 is similar to −(D+(A))−1F+(A), it follows

that −(D+(A))−1F+(A) has exactly one positive eigenvalue

λ+ := ρ(−(D+(A))−1F+(A)).

Assume that x = (xi) is a positive eigenvector corresponding to λ+ . Then we have

−(D+(A))−1F+(A)x = λ+x,
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and then

F+(A)x = −λ+D
+(A)x,

which is equivalent to

n
∑

j=1

sijxj = λ+(
n
∑

j=1

sijxj −
n
∑

j=1

aijxj), i = 1, 2, · · · , n,

i.e.,

λ+ =

n
∑

j=1

sijxj

n
∑

j=1

sijxj −
n
∑

j=1

aijxj

, i = 1, 2, · · · , n. (3.7)

Setting

xm = min
1≤i≤n

{xi},

we get

n
∑

j=1

amjxj = ammxm +
∑

j 6=m

amjxj ≥ xm

n
∑

j=1

amj > 0,

which, by (3.7), implies

λ+ =

n
∑

j=1

smjxj

n
∑

j=1

smjxj −
n
∑

j=1

amjxj

> 1.

Since λ+ is also the only positive eigenvalue of (−D+(A))−
1

2F+(A)(−D+(A))−
1

2 , we

can get that (3.6) holds. The proof is completed.

The following theorem shows that the condition on F+(A) can be weakened if

the condition that −D+(A) is an M -matrix is strengthened.

Theorem 3.14. Let A = (aij) ∈ R
n×n be symmetric, let all row sums of A be

positive, and let A be decomposed into

A = D+(A) + F+(A).

If F+(A) belonging to B is nonnegative, and −D+(A) is a strictly diagonally domi-

nant M -matrix, then A ∈ B.
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Proof. Let λ+ be defined as in the proof of Theorem 3.13. Then, by the proof of

Theorem 3.13, we need only prove λ+ > 1. In fact, we have, from Theorem 2 in [4],

λ+ ≥ min
1≤i≤n

n
∑

j=1

sij

n
∑

j=1

sij −
n
∑

j=1

aij

> 1.

The proof is completed.

By an analogous argument as in the proof of Theorems 3.13, we derive immedi-

ately the following result.

Theorem 3.15. Let A = (aij) ∈ R
n×n be symmetric, let A have at least one

positive diagonal element, and let A be decomposed into

A = D+(A) + F+(A).

If F+(A) ∈ A , and −D+(A) is an M -matrix, then A ∈ B.

Remark 3.16. We remark that, similar to the relation between MC-matrices

and MC′-matrices, the classes of matrices described by Theorem 3.13 and Theorem

3.15 do not contain each other.

From Theorems 3.3, 3.10, 3.13-3.15, we can obtain the following simple sufficient

conditions.

Corollary 3.17. Let A ∈ R
n×n be symmetric, and let A be decomposed into

A = D+(A) + F+(A).

If one of the following conditions holds:

1. all row sums of A are positive, F+(A) is a symmetric positive MC-matrix,

and −D+(A) is an M -matrix;

2. all row sums of A are positive, F+(A) is a symmetric nonnegative MC-

matrix, and −D+(A) is a strictly diagonally dominant M -matrix;

3. A has at least one positive diagonal element, F+(A) is a symmetric positive

MC-matrix, and −D+(A) is an M -matrix,

then A ∈ B.
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