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A NEW UPPER BOUND FOR THE EIGENVALUES OF THE

CONTINUOUS ALGEBRAIC RICCATI EQUATION∗
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Abstract. By using majorization inequalities, we propose a new upper bound for summations

of eigenvalues (including the trace) of the solution of the continuous algebraic Riccati equation. The

bound extends some of the previous results under certain conditions. Finally, we give a numerical

example to illustrate the effectiveness of our results.
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1. Introduction. We consider the continuous algebraic Riccati equation(CAR

E)

ATK +KA−KRK = −Q,(1.1)

where Q ≥ 0, R > 0. The CARE has a maximal positive semidefinite solution K,

which is the solution of practical interest (see Theorem 9.4.4 in Lancaster and Rodman

[1]). Various bounds for this solution have been presented in [2-12]. These include

norm bounds, eigenvalue bounds and matrix bounds. In this paper, we apply ma-

jorization inequality methods in Marshall and Olkin [13] to obtain a new upper bound

for summations of eigenvalues (including the trace) of the solution of the CARE. The

bound is a refinement of an upper bound presented in [10] under certain conditions.

2. A new upper bound for summations of eigenvalues for the solution of

the continuous algebraic Riccati equation. Throughout this paper, we use Rn×n

to denote the set of n× n real matrices. Let Rn = {(x1, . . . , xn) : xi ∈ R for all i},

R
n
++ = {(x1, . . . , xn) : xi > 0 for all i}, D = {(x1, . . . , xn) : x1 ≥ · · · ≥ xn}, D+ =
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{(x1, . . . , xn) : x1 ≥ · · · ≥ xn ≥ 0}. Suppose x = (x1, x2, . . . , xn) is a real n-element

array which is reordered so that its elements are arranged in non-increasing order.

i.e., x[1] ≥ x[2] ≥ · · · ≥ x[n]. Let |x| = (|x1|, |x2|, . . . , |xn|). For A = (aij) ∈ R
n×n,

denote by d(A) = (d1(A), d2(A), . . . , dn(A)) and λ(A) = (λ1(A), λ2(A), . . . , λn(A))

the diagonal elements and the eigenvalues of A, respectively. Let tr(A) and AT

denote the trace and the transpose of A, respectively, and define (A)ii = aii = di(A)

and A = A+AT

2 . The notation A > 0 (A ≥ 0) is used to denote that A is a symmetric

positive definite (semi-definite) matrix.

Let α and β be two real n-element arrays.

If they satisfy

k∑

i=1

α[i] ≤

k∑

i=1

β[i], k = 1, 2, . . . , n,

then it is said that α is weakly majorized by β, which is denoted by α ≺w β.

If they satisfy

k∑

i=1

α[n−i+1] ≥

k∑

i=1

β[n−i+1], k = 1, 2, . . . , n,

then it is said that α is weakly submajorized by β, which is denoted by α ≺w β.

If α ≺w β and

n∑

i=1

α[i] =
n∑

i=1

β[i],

then it is said that α is majorized by β, which is denoted by α ≺ β.

The following lemmas are used to prove the main results.

Lemma 2.1. [13, p. 141, A.3] If xi, yi, i = 1, 2, . . . , n, are two sets of numbers,

then

n∑

i=1

x[i]y[n−i+1] ≤

n∑

i=1

xiyi ≤

n∑

i=1

x[i]y[i].

Lemma 2.2. [13, p. 95, H.3.b] If x, y ∈ D and x ≺w y, then for any k =

1, 2, . . . , n,

k∑

i=1

x[i]u[i] ≤

k∑

i=1

y[i]u[i], ∀u ∈ D+.
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Lemma 2.3. [13, p. 95, H.3.c] If x, y ∈ D+, a, b ∈ D+, (x1, . . . , xn) ≺w

(y1, . . . , yn) and (a1, . . . , an) ≺w (b1, . . . , bn), then

(a1x1, . . . , anxn) ≺w (b1y1, . . . , bnyn).

Lemma 2.4. [13, p. 218, B.1] If A = AT ∈ R
n×n, then

d(A) ≺ λ(A),

which is equivalent to

d(A) ≺w λ(A) and d(A) ≺w λ(A).

Lemma 2.5. [13, p. 118, A.2.h] If x, y ∈ R
n
++ and x ≺w y, then for r < 0,

(xr
1, . . . , x

r
n) ≺w (yr1, . . . , y

r
n).

Remark 2.6. If A = AT ∈ R
n×n, then we have

d(A) ≺w λ(A)(2.1)

from Lemma 2.4. Combining (2.1) with Lemma 2.5, we obtain for A > 0,
(

1

d1(A)
, . . . ,

1

dn(A)

)
≺w

(
1

λ1(A)
, . . . ,

1

λn(A)

)
.(2.2)

Lemma 2.7. (Cauchy-Schwartz inequality) For real numbers ai and bi, i =

1, 2, . . . , n,

n∑

i=1

aibi ≤

(
n∑

i=1

a2i

) 1
2
(

n∑

i=1

b2i

) 1
2

.(2.3)

We are now ready to give a new upper bound for summations of eigenvalues

(including the trace) of the solution of the continuous algebraic Riccati equation,

which improves under certain conditions the following bound in Komaroff [10]: Let K

be the positive semi-definite solution of the CARE (1.1). Then for any l = 1, 2, . . . , n,

l∑

j=1

λ[j](K) ≤

lλ[1](A) + l

√
λ2
[1](A) +

λ[n](R)

l

l∑
j=1

λ[j](Q)

λ[n](R)
.(2.4)
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Theorem 2.8. Let K be the positive semi-definite solution of the CARE (1.1)

and assume that A ≥ 0. Then for any l = 1, 2, . . . , n, we have

l∑

j=1

λ[j](K) ≤

l∑

j=1

λ[j](A)

λ[n−j+1](R)
+ l

1
2

√√√√
l∑

j=1

λ2
[j](A)

λ2
[n−j+1](R)

+

l∑

j=1

λ[j](Q)

λ[n−j+1](R)
.(2.5)

Proof. Since K is the positive semi-definite solution of the CARE (1.1), we have

K = Udiag(λ[1](K), λ[2](K), . . . , λ[n](K))UT ,

where U ∈ R
n×n is orthogonal. Thus, (1.1) can be written as

ΛkR̃Λk = ΛkÃ+ ÃTΛk + Q̃,(2.6)

where R̃ = UTRU, Ã = UTAU, Q̃ = UTQU, Λk = diag(λ[1](K), λ[2](K), . . . , λ[n](K)).

Then from (2.6), for j = 1, . . . , l, we have

λ2
[j](K)dj(R̃) = dj(ΛkR̃Λk) = dj(ΛkÃ+ ÃTΛk) + dj(Q̃) = 2λ[j](K)dj(Ã) + dj(Q̃).

Hence,

l∑

j=1

λ2
[j](K) = 2

l∑

j=1

λ[j](K)
dj(Ã)

dj(R̃)
+

l∑

j=1

dj(Q̃)

dj(R̃)
.(2.7)

Obviously, we have d[l−j+1](R̃) ≥ d[n−j+1](R̃). Furthermore, we have

(
1

d1(R̃)
, . . . ,

1

dl(R̃)

)
≺w

(
1

d[n](R̃)
, . . . ,

1

d[n−l+1](R̃)

)
,

(d1(Ã), . . . , dl(Ã)) ≺w (d[1](Ã), . . . , d[l](Ã)).

Applying Lemma 2.1 and Lemma 2.3 yields

l∑

j=1

dj(Q̃)

dj(R̃)
≤

l∑

j=1

d[j](Q̃)

d[l−j+1](R̃)
≤

l∑

j=1

d[j](Q̃)

d[n−j+1](R̃)
,(2.8)

l∑

j=1

dj(Ã)

dj(R̃)
≤

l∑

j=1

d[j](Ã)

d[l−j+1](R̃)
≤

l∑

j=1

d[j](Ã)

d[n−j+1](R̃)
.(2.9)

According to Lemma 2.2 and (2.9), it is evident that

l∑

j=1

λ[j](K)
dj(Ã)

dj(R̃)
≤

l∑

j=1

λ[j](K)
d[j](Ã)

d[n−j+1](R̃)
.(2.10)
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By (2.8), (2.10), (2.2), Lemma 2.3 and Lemma 2.4, (2.7) leads to

l∑

j=1

λ2
[j](K) ≤ 2

l∑

j=1

λ[j](K)
d[j](Ã)

d[n−j+1](R̃)
+

l∑

j=1

d[j](Q̃)

d[n−j+1](R̃)
(2.11)

≤ 2
l∑

j=1

λ[j](K)
λ[j](A)

λ[n−j+1](R)
+

l∑

j=1

λ[j](Q)

λ[n−j+1](R)
.

Consequently,

l∑

j=1

λ2
[j](K)− 2

l∑

j=1

λ[j](K)
λ[j](A)

λ[n−j+1](R)
+

l∑

j=1

λ2
[j](A)

λ2
[n−j+1](R)

≤
l∑

j=1

λ2
[j](A)

λ2
[n−j+1](R)

+
l∑

j=1

λ[j](Q)

λ[n−j+1](R)
,

which is equivalent to

l∑

j=1

(
λ[j](K)−

λ[j](A)

λ[n−j+1](R)

)2

≤
l∑

j=1

λ2
[j](A)

λ2
[n−j+1](R)

+
l∑

j=1

λ[j](Q)

λ[n−j+1](R)
.(2.12)

By the Cauchy-Schwartz inequality (2.3), it can be shown that

l∑

j=1

(
λ[j](K)−

λ[j](A)

λ[n−j+1](R)

)2

≥
1

l




l∑

j=1

|λ[j](K)−
λ[j](A)

λ[n−j+1](R)
|




2

(2.13)

≥
1

l

∣∣∣∣∣∣

l∑

j=1

(
λ[j](K)−

λ[j](A)

λ[n−j+1](R)

)∣∣∣∣∣∣

2

.

Combining (2.12) with (2.13) implies that

∣∣∣∣∣∣

l∑

j=1

λ[j](K)−

l∑

j=1

λ[j](A)

λ[n−j+1](R)

∣∣∣∣∣∣
≤ l

1
2

√√√√
l∑

j=1

λ2
[j](A)

λ2
[n−j+1](R)

+

l∑

j=1

λ[j](Q)

λ[n−j+1](R)
.

Therefore,

l∑

j=1

λ[j](K) ≤

l∑

j=1

λ[j](A)

λ[n−j+1](R)
+ l

1
2

√√√√
l∑

j=1

λ2
[j](A)

λ2
[n−j+1](R)

+

l∑

j=1

λ[j](Q)

λ[n−j+1](R)
.
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Corollary 2.9. Let K be the positive semi-definite solution of the CARE (1.1)

and assume that A ≥ 0. The trace of matrix K has the bound given by

tr(K) ≤

n∑

j=1

λ[j](A)

λ[n−j+1](R)
+ n

1
2

√√√√
n∑

j=1

λ2
[j](A)

λ2
[n−j+1](R)

+

n∑

j=1

λ[j](Q)

λ[n−j+1](R)
.

Remark 2.10. We point out that (2.5) improves (2.4) when A ≥ 0. Actually, if

A ≥ 0, noting that for j = 1, 2, . . . , l, 1
λ[n−j+1](R) ≤

1
λ[n](R) , then we have

l∑

j=1

λ[j](A)

λ[n−j+1](R)
+ l

1
2

√√√√
l∑

j=1

λ2
[j](A)

λ2
[n−j+1](R)

+
l∑

j=1

λ[j](Q)

λ[n−j+1](R)

≤ l max
1≤j≤l

λ[j](A)

λ[n−j+1](R)
+ l

1
2

√√√√l max
1≤j≤l

λ2
[j](A)

λ2
[n−j+1](R)

+
n∑

j=1

λ[j](Q)

λ[n−j+1](R)

=
lλ[1](A)

λ[n](R)
+ l

√√√√
(
λ[1](A)

λ[n](R)

)2

+
1

l

l∑

j=1

λ[j](Q)

λ[n−j+1](R)
.

≤
lλ[1](A)

λ[n](R)
+ l

√√√√
(
λ[1](A)

λ[n](R)

)2

+
1

lλ[n](R)

l∑

j=1

λ[j](Q)

=
lλ[1](A)

λ[n](R)
+

l

λ[n](R)

√√√√λ2
[1](A) +

λ[n](R)

l

l∑

j=1

λ[j](Q).

This implies that (2.5) is better than (2.4) when A ≥ 0.

3. A numerical example. In this section, we present a numerical example to

illustrate the effectiveness of the main results.

Example 3.1. Let

A =




11 2 8 7

1 9 2 3

−2 −1 2 −5

1 4 3 12


 , R =




10 −1 6 2

−1 9 4 3

6 4 16 −5

2 3 −5 12


 ,
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Q =




2283 809 1003 1022

809 2693 1170 1423

1003 1170 1119 374

1022 1423 374 1458


 .

Obviously, A ≥ 0.

Case 1: Choose l = 3. Using (2.4) yields

3∑

j=1

λ[j](K) ≤ 183.45.(3.1)

By (2.5), we have

3∑

j=1

λ[j](K) ≤ 130.85,

which is better than that of (3.1).

Case 2: Choose l = n = 4. Using (2.4) yields

tr(K) ≤ 244.82.(3.2)

By (2.5), we have

tr(K) ≤ 148.75,

which is better than that of (3.2).
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