
ELA

ON THE MINIMUM VECTOR RANK OF MULTIGRAPHS∗
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Abstract. The minimum vector rank (mvr) of a graph over a field F is the smallest d for which a

faithful vector representation of G exists in Fd . For simple graphs, minimum semidefinite rank (msr)

and minimum vector rank differ by exactly the number of isolated vertices. We explore the relationship

between msr and mvr for multigraphs and show that a result linking the msr of chordal graphs to clique

cover number also holds for the mvr of multigraphs. We study the difference between msr and mvr in

the removal of duplicate vertices in multigraphs, and relate mvr to certain coloring problems.
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1. Introduction. A graph G consists of a set of vertices V(G) and a set of edges

E(G) which are unordered pairs of vertices. A graph is simple if it has no multiple

edges or loops. In what follows, we only consider graphs that have no loops, but

may have multiple edges (multigraphs).

A subset of vertices and the set of edges among them in G form an induced

subgraph of G. We let N(v) denote the neighborhood of a vertex v, which is the

set of vertices of G adjacent to v, and set N[v] = {v} ∪ N(v). We also define

N1(v) to be the set of vertices of G adjacent to v by exactly one edge, and set

N1[v] = {v} ∪ N1(v). Note that, for a simple graph, N1(v) = N(v) for every vertex

v. We say a vertex v is singly-isolated if N1(v) is empty.

A square matrix M = [mij] is combinatorially symmetric when mij = 0 if and only

if mji = 0. If G is a graph on n vertices that has no loops, let C(G, F) denote the

set of all n-by-n combinatorially symmetric matrices with entries in the field F such

that
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• aij 6= 0 if i and j are joined by exactly one edge, and

• aij = 0 if i 6= j and i and j are not adjacent.

Minimum rank problems seek to find the minimum rank over matrices in a

given subset of C(G, F) for a specified G and F. For positive semidefinite (psd)

matrices, this is the minimum semidefinite rank, mr+(G) for F = R and msr(G) for

F = C. This problem has been previously studied both for multigraphs as we have

presented it [1, 4, 7, 19] and when the graph G is required to be simple [3, 11].

We say ~X = {~x1, . . . ,~xn} ⊂ F
m is an (orthogonal) vector representation [16] of

G when X∗X ∈ C(G, F), where X is the matrix whose columns are the vectors ~xi.

In this paper, F will be either R or C, and we will only consider the class of psd

matrices over F. By the rank of a vector representation, we mean the dimension of

the span of the vectors.

Positive semidefinite matrices in Mn(F) may be characterized by their factor-

ization as X∗X for some X ∈ Mn(F) of the same rank so that each psd matrix is a

Gram matrix of a certain set of vectors. Therefore, the smallest m for which there ex-

ists a vector representation of G in Fm is equal to the msr, and finding a psd matrix

with a given graph and finding a vector representation of the graph are equivalent

problems.

Given a vector representation ~V of a graph G, for a fixed vertex v, we may “or-

thogonally remove” the vector ~v that corresponds to v by orthogonally projecting

each vector of ~V onto the complement of the span of ~v. This yields a vector repre-

sentation ~V ⊖~v with rank decreased by one of a graph G′ with order decreased by

one. We define G ⊖ v so that ~V ⊖~v is a vector representation of G ⊖ v as follows: in

the induced subgraph G − v of G, between any u, w ∈ N(v) add e − 1 edges, where

e is the sum of the number of edges between u and v and the number of edges

between w and v. By construction, msr(G) ≥ msr(G ⊖ v) + 1.

We will say that a multigraph is complete if N[v] = V(G) for every vertex v.

Recall that a graph is chordal if it does not contain an induced subgraph that is a

cycle on four or more vertices, a clique is a maximal induced complete subgraph,

and that a vertex v is simplicial if N[v] is a clique. Further, every chordal graph has

a simplicial vertex [2, pg. 175]. The clique number of a graph G, ω(G), is the order

of a largest clique of G [20].

In the original definition, vector representations of a graph may include a zero

vector. Thus, isolated and singly-isolated vertices do not influence the msr of a

graph. In certain situations, such as computing the msr of the join of two graphs [7],

it has been beneficial to consider only non-degenerate vector representations that do

not include zero vectors. This led to the definition of the minimum vector rank (mvr)
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of a graph G as the minimum rank among non-degenerate vector representations

of G.

For simple graphs, mvr and msr differ by exactly the number of isolated vertices.

Therefore, if G is a connected simple graph on two or more vertices and H is an

induced subgraph of G, then mvr(G) = msr(G) ≥ mvr(H) [11, Proposition 2.3].

For connected multigraphs, this need not be the case, and the relationship between

mvr and msr is not known. For example, let G be a path on three vertices with

the single edges replaced by double edges and let H be the complete graph on two

vertices with the single edge replaced by a double edge. Then msr(G) = 0 but

mvr(H) = 1.

For a graph G, let S(G) denote the set of simple (not necessarily connected)

subgraphs of G (so that H ∈ S(G) is obtained from G by repeatedly either deleting

a multiple edge or replacing a multiple edge by a single edge).

For a multigraph G, we say that a set of subgraphs G1, . . . , Gn is a vertex cover

of G if each vertex of G is a vertex of at least one Gi, and an edge cover if for every

pair of vertices v and w of G that are adjacent by exactly one edge in G, there is at

least one Gi in which v and w are adjacent by exactly one edge. An edge or vertex

cover by simple cliques is called a clique cover. These definitions extend the usual

ones for simple graphs.

Clique covers of graphs have been studied in many different contexts, and have

a corresponding number of different notations. We will use θ(G) = θ0(G) for the

vertex clique cover number, cc(G) = θ1(G) for the edge clique cover number, and

define θ2(G) to be the smallest possible number of cliques in a clique cover that is

both a vertex and edge cover (cf. [5, 17, 18]).

For a simple graph, it is well known that edge covers give upper bounds on msr.

In the case of multigraphs and mvr, this remains true. Except for the final claim,

the following lemma has appeared previously in the case of F = C [4, Lemma 3.3],

but we include a proof of all claims for completeness.

Lemma 1.1. Let F = C or F = R. Suppose that ~X1, . . . , ~Xm, with ~Xi ⊆ Fn for

1 ≤ i ≤ m, are vector representations of subgraphs G1, . . . , Gm of a multigraph G such that

• G1, . . . , Gm is an edge cover of G, and

• for every pair of vertices v and w that are not adjacent in G, if ~xv represents vertex

v in ~Xi and ~xw represents vertex w in ~Xj, then ~xv and ~xw are orthogonal,
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then there exists a vector representation ~X of G with

rank ~X ≤ rank

(

Span
m
⋃

i=1

~Xi

)

≤
m

∑
i=1

rank ~Xi .

Further, if for every vertex v of G, there exists an i such that the vector representing v in ~Xi

is non-zero, then ~X will be non-degenerate.

Proof. We prove the statement for the case of two vector representations as that

result can be used repeatedly to give the more general case. Let ~X = {~xi} and
~W = {~wi} be vector representations of subgraphs G1 and G2 of a graph G. Extend
~X and ~W to represent all vertices of G by adding copies of the zero vector if need be.

We claim there exists a scalar c ∈ F such that {~xi + c~wi} is a vector representation

of G.

If vertices vi and vj are not adjacent in G, then the inner products 〈~xi,~xj〉,

〈~xi, ~wj〉, 〈~wi, ~wj〉, and 〈~wi,~xj〉 are all zero. Then 〈~xi + c~wi,~xj + c~wj〉 is also zero

for any choice of c. If vi and vj are adjacent by exactly one edge in G, then

{〈~xi + c~wi,~xj + c~wj〉} is a set of quadratic polynomials in c having finitely many

roots. Thus there exists a c ∈ F such that {~xi + c~wi} is a vector representation of G.

If for every vertex vi of G, either ~xi or ~wi is non-zero, there are at most finitely

many c for which some ~xi + c~wi will be the zero vector. Thus, in this case, there

exists a c ∈ F such that {~xi + c~wi} is a non-degenerate vector representation of G.

2. Duplicate Vertices. For a simple graph G, we say a vertex v is a duplicate of

a vertex w if N[v] = N[w]. Since duplicate vertices may be represented by the same

vector in a vector representation of G, we have

Theorem 2.1 ([4, Proposition 2.2]). Let G be a simple connected graph on three or

more vertices. If u is a duplicate of a vertex v in G, then msr(G) = msr(G − u).

As shown in Example 2.2, for a graph G with multiple edges, the result of

Theorem 2.1 may no longer be true when trying to use the same definition, since,

even if N[v] = N[w] in G, the closed neighborhoods of v and w need not be the

same in a graph of S(G).

Example 2.2. In Figure 2.1, N[v] = N[w] in G, and removing w leaves the

graph G − w which has msr two, given by H ∈ S(G − w). However, every graph in

S(G) (and therefore G) has msr three.

As shown in Example 2.2, in the multigraph setting, for v and w to act like

duplicates, it is not even enough for there to exist a graph H in S(G) with msr(H) =

msr(G) where v and w are duplicates in H.
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Fig. 2.1. Graphs to accompany Example 2.2.

For a simple graph G, if there exists a vector representation of G in which two

vertices v and w are represented by parallel vectors, then v and w must be duplicate

vertices. Example 2.2 also shows that the existence of a vector representation of a

multigraph in which two vertices are represented by parallel vectors, and even such

a vector representation that is minimal with respect to rank, does not guarantee that

the removal of one vertex will not affect msr.

Instead, we suggest that if v and w are adjacent in G and satisfy N1(w) ⊆ N1[v]

and N[v] ⊆ N[w], we will say that w duplicates v. If w duplicates v and v duplicates

w, then v and w are duplicate vertices. If the graph is simple, then v and w are

duplicate vertices in the original sense. Moreover, in a simple graph, since N1(w) =

N(w), w duplicates v if and only if v and w are duplicate vertices.

Remark 2.3. From the definition, if w duplicates v, then w and v are adjacent.

Also, if v is singly-isolated then so is w.

Proposition 2.4. Let G be a multigraph containing vertices v and w where w du-

plicates v. Then msr(G) ≤ msr(G − w) + 1. If further N1(v) 6= {w}, then msr(G) =

msr(G − w).

Proof. Since G − w is an induced subgraph of G, msr(G) ≥ msr(G − w). If w

is singly-isolated in G, we are done, so we may assume that neither v nor w are

singly-isolated.

First, suppose that N1(v) 6= {w}. In order to establish that msr(G) ≤ msr(G −

w), since the desired result holds for simple graphs, our strategy will be to choose

simple graph representatives of G and G − w to work with: let H′ be any graph

in S(G − w) such that msr(H′) = msr(G − w) and take H to be the unique graph

in S(G) such that v and w are duplicate vertices in H and H − w = H′. Because

N1(v) 6= {w}, the connected component of H containing v and w has at least three

vertices. Therefore, Theorem 2.1 may be applied to H and H − w to yield msr(G) ≤
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Fig. 2.2. Graphs to accompany Example 2.5.

msr(H) = msr(H − w) = msr(G − w).

For the remaining case, we will again resort to working with simple graph

representatives: if N1(v) = {w}, then v is singly-isolated in G − w so that msr(G −

w) = msr(G − w − v). If H ∈ S(G − w − v) with msr(H) = msr(G − w − v),

then adding a K2 component on two vertices v and w to H gives a graph G′ with

G′ ∈ S(G), and msr(G′) = msr(H) + 1. Thus

msr(G) ≤ msr(G′) = msr(H) + 1 = msr(G − w − v) + 1 = msr(G − w) + 1.

Example 2.5. Referring to Figure 2.2, in both G1 and G2, w duplicates v and

N1(v) = {w}. Further, msr(G1) = 1 = msr(G1 − w), but msr(G2) = 3 while

msr(G2 − w) = 2, showing that the inequality in Proposition 2.4 can be strict.

If v is simplicial, we can get a result similar to Proposition 2.4 under less restric-

tive assumptions.

Proposition 2.6. Let v be a simplicial vertex of a multigraph G that is not singly-

isolated, w a neighbor of v, and N1[w] ⊆ N[v]. Then msr(G) = msr(G − w).

Proof. Because G −w is an induced subgraph of G, msr(G) ≥ msr(G −w). Take

a vector representation ~X1 of G − w with rank(~X1) = msr(G − w), and let G1 be the

corresponding simple graph in S(G − w) such that msr(G1) = msr(G − w). Let ~v

be the vector of ~X1 representing vertex v, and let G2 be the simple complete graph

on the vertices of N[v] in G. Define a vector representation ~X2 of G2 by letting

every vector be represented by ~v. Because v is simplicial in G, G1 and G2 along

with ~X1 and ~X2 satisfy the conditions of Lemma 1.1, and so there exists a vector

representation ~X of G with

rank(~X) ≤ rank
(

Span
(

~X1 ∪ ~X2

))

= rank
(

Span ~X1

)

= msr(G − w)

showing that msr(G) ≤ msr(G − w).
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Duplicate vertices behave somewhat better with respect to mvr than they do

with respect to msr:

Proposition 2.7. Let G be a simple graph with duplicate vertices v and w. Then

mvr(G) = mvr(G − w).

Proof. Since G − w is an induced subgraph of G, mvr(G) ≥ mvr(G − w). Let
~X be a non-degenerate vector representation of G − w, and let ~v be the vector rep-

resenting v in ~X. Then, setting ~w = ~v, ~X′ = ~X ∪ {~w} is a non-degenerate vector

representation of G with rank ~X′ = rank ~X, showing mvr(G) ≤ mvr(G − w).

Proposition 2.8. Let G be a multigraph containing vertices v and w where w dupli-

cates v. Then mvr(G) = mvr(G − w).

Proof. Let v and w be adjacent in G, N1(w) ⊆ N1[v], and N[v] ⊆ N[w]. Let

H′ be any graph in S(G − w) such that mvr(H′) = mvr(G − w). Take H to be the

unique graph in S(G) such that v and w are duplicate vertices in H and H −w = H′.

Apply Proposition 2.7 to H and H −w to yield mvr(G) ≤ mvr(H) = mvr(H −w) =

mvr(G − w). Since G − w is an induced subgraph of G, mvr(G − w) ≤ mvr(G).

Remark 2.9. In Example 2.5, note that mvr(G2 − w) = 3 = mvr(G2).

Isolated and singly-isolated vertices behave differently when computing mvr. If

v is an isolated vertex of a graph G, in any non-degenerate vector representation

of G, v must be represented by a non-zero vector that is orthogonal to every other

vector in the representation. Thus, for a simple graph G, mvr(G) = msr(G) + i,

where i is the number of isolated vertices [11]. This is also true for graphs with

multiple edges as long as no singly-isolated vertices are involved.

Proposition 2.10. If G is a multigraph that does not contain any singly-isolated

vertices, mvr(G) = msr(G) + i, where i is the number of isolated vertices of G. Further,

mvr (like msr) is additive on connected components.

Proof. Both mvr and msr are additive on connected components since the spans

of vectors representing different connected components must be orthogonal sub-

spaces. The first claim follows from this given mvr(K1) = 1 and msr(K1) = 0,

where K1 is a single vertex, and that mvr(H) = msr(H) + i for any H in S(G),

where i is the number of isolated vertices of G (and also of H since G has no singly-

isolated vertices).

When singly-isolated vertices are present, they may or may not contribute to

mvr, as shown by Example 2.11.

Example 2.11. We can construct a graph G with n singly-isolated vertices where

mvr(G) = msr(G) + m, for any 0 ≤ m ≤ n. To do so, take a complete simple graph
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Fig. 2.3. Graphs to accompany Example 2.12.

on 2n + 1 vertices, choose n − m of those vertices and double the edges incident to

them so that they become singly-isolated. Finally, take m of the remaining vertices

that are not singly-isolated and adjoin a singly-isolated vertex to each. The resulting

graph has msr one and mvr equal to m + 1.

A consequence of considering only non-degenerate vector representations is

that if v is an isolated vertex of G, then mvr(G) = mvr(G − v) + 1. Again, however,

singly-isolated vertices can behave differently, as shown in Example 2.12.

Example 2.12. In the graphs G1 and G2 of Figure 2.3, v and w are singly isolated,

and inspection shows that mvr(G1) = mvr(G1 − v) = 1 while mvr(G2) = mvr(G2 −

w) + 1.

Proposition 2.13. Let v be a singly-isolated vertex of a graph G. If for every sim-

ple graph H in S(G) with mvr(G) = mvr(H) the vertex v is not isolated in H then

mvr(G) = mvr(G − v). Otherwise mvr(G) = mvr(G − v) + 1.

Proof. First, notice that mvr(G) ≤ mvr(G − v) + 1 since adjoining an isolated

vertex v to any H in S(G − v) increases the mvr by one. Since G − v is an induced

subgraph of G, mvr(G − v) ≤ mvr(G). Suppose for every simple graph H ∈ S(G)

with mvr(G) = mvr(H) the vertex v is not isolated in H. If mvr(G) = mvr(G −

v) + 1, then adjoining an isolated vertex v to any H′ in S(G − v) yields a graph

H in S(G) with mvr(H) = mvr(G) and where v is isolated, contradicting our

assumption. Hence, mvr(G) = mvr(G − v).

Proposition 2.14. For any graph G, msr(G) + i ≤ mvr(G) ≤ msr(G) + i + m,

where i is the number of isolated vertices of G and m is the number of singly-isolated vertices

of G.

Proof. If G has no singly-isolated vertices, this follows from Proposition 2.10.

Assume the result is true for all graphs with m− 1 singly-isolated vertices, and let G

have m singly-isolated vertices. Let v be a singly-isolated vertex. By Proposition 2.13,

mvr(G − v) ≤ mvr(G) ≤ mvr(G − v) + 1. Since v is singly-isolated, msr(G) =

msr(G − v). By the induction hypothesis, msr(G − v) + i ≤ mvr(G − v) ≤ msr(G −

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 661-672, October 2010

http://math.technion.ac.il/iic/ela



ELA

On The Minimum Vector Rank of Multigraphs 669

v) + i + m − 1, so that

msr(G) + i = msr(G − v) + i ≤ mvr(G − v) ≤ mvr(G) ≤ mvr(G − v) + 1

≤ msr(G − v) + i + (m − 1) + 1 = msr(G) + i + m .

3. Simplicial Vertices. For a connected chordal graph with no singly-isolated

vertices, msr(G) = cc(G) [4] (the statement is actually for any connected chordal

graph, but as an edge cover, cc(G) is defined to not require covering singly-isolated

vertices). We now consider an analogue of this result and its corollaries for mvr. Be-

cause degenerate vector representations may be considered when computing msr,

it does not matter that the orthogonal removal of a vertex from a vector representa-

tion may result in a vector representation containing zero vectors. However, when

computing mvr, one may only orthogonally remove a vertex v if for every non-

degenerate vector representation of the graph there does not exist another vertex w

for which the vectors representing v and w are parallel. We have already noted that

this condition does not imply that one vertex duplicates another. However, if the

vertex v is simplicial, we can say more:

Proposition 3.1. For any vertex v of a graph G, mvr(G ⊖ v) ≤ mvr(G). If v is

simplicial, then mvr(G ⊖ v) ≤ mvr(G) ≤ mvr(G ⊖ v) + 1. If v is a simplicial vertex

and there does not exist a neighbor w of v for which N1[w] ⊆ N[v], then mvr(G) =

mvr(G ⊖ v) + 1.

Proof. Note that the condition N1[w] ⊆ N[v] means that if w is adjacent to any

vertex in G − N[v], then it is adjacent by multiple edges. If there exists a neighbor

w of v for which N1[w] ⊆ N[v], if ~V is a vector representation of G, then ~V ⊖ ~v

may not be a vector representation of G ⊖ v. However, since for each wi such

that N1[wi] ⊆ N[v] in G, wi is singly-isolated in G ⊖ v, and all such wi form a

clique in G ⊖ v, so that using Lemma 1.1 and that rank(~V ⊖~v) = mvr(G)− 1, we

may construct a non-degenerate vector representation of G ⊖ v with rank mvr(G),

showing that mvr(G) ≥ mvr(G ⊖ v).

If v is simplicial, then mvr(G) ≤ mvr(G ⊖ v) + 1 by Lemma 1.1. If, further,

there does not exist a neighbor w of v for which N1[w] ⊆ N[v], then there are

no singly isolated vertices in G ⊖ v and ~V ⊖ ~v is a vector representation of G ⊖ v.

As a result, mvr(G) ≥ mvr(G ⊖ v) + 1. Together with the above, this gives that

mvr(G) = mvr(G ⊖ v) + 1.

Using non-degenerate vector representations and without the need to assume

that the vertex is not singly-isolated, the proof of Proposition 2.6 gives the following:

Proposition 3.2. Let v be a simplicial vertex of a graph G, w a neighbor of v, and
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N1[w] ⊆ N[v]. Then mvr(G) = mvr(G − w).

Theorem 3.3. Let G be a chordal graph. Then mvr(G) = θ2(G).

Proof. Induct on the number of vertices of G. If G has one vertex, then mvr(G) =

θ2(G) = 1. For graphs with two or more vertices, since G is chordal, it has a

simplicial vertex v. If there exists a neighbor w of v in G such that N1[w] ⊆ N[v],

then mvr(G) = mvr(G − w) by Proposition 3.2, θ2(G) = θ2(G − w) by definition,

and the result follows from applying the induction hypothesis to G − w. If there is

no such neighbor of v, then mvr(G) = mvr(G ⊖ v) + 1 by Proposition 3.1, θ2(G) =

θ2(G ⊖ v) + 1, and the result follows from applying the induction hypothesis to

G ⊖ v.

Corollary 3.4. For a connected chordal graph G, mvr(G) − msr(G) is exactly

θ2(G)− θ1(G).

4. Vector Coloring. For a simple graph G, let D(G) be the multigraph obtained

by adding another edge to G wherever there already is one, and let Gc be the

usual complement of G. We end by considering the mvr of graphs that have the

form D(G) for some simple graph G. These are graphs for which the relationship

between msr (which is zero) and mvr is at its most distant.

Recall that a graph is perfect if for all induced subgraphs H of G, χ(H) =

ω(G). A subset of vertices of a graph G is independent if no two are adjacent. The

independence number α(G) is the size of a largest independent set of G. Since the

vertices of an independent set must be represented by mutually orthogonal vectors,

mvr(G) ≥ α(G) for any graph G.

A vertex coloring of a graph G = (V, E) is a function ϕ : V → C from the set

of vertices to a set C of colors. A coloring ϕ is valid if no two adjacent vertices are

assigned the same color. A k-coloring is a valid vertex-coloring with at most k colors.

A graph is k-colorable if it admits a valid vertex-coloring with k colors. A graph is

k-chromatic if it is k-colorable but not (k − 1)-colorable, in which case the chromatic

number χ(G) is k.

For a simple graph G, the parameter mvr(D(G)) is equal to the vector chromatic

number of the complement of G [10]. That is, mvr(D(G)) = χv(Gc). When restricted

to vectors over the real numbers, the parameter mvr(D(Gc)) was used by Lovász in

his solution of the Shannon capacity of C5 [15] and his characterization (with Saks

and Schrijver) of k-connected graphs [12, 13]. A related parameter was introduced

and used by Haemers [8, 9] to give an upper bound on Shannon capacity. See the

survey by Lovász and Vesztergombi [14] for further information.

Remark 4.1. From the definitions, for all simple graphs G, χ(G) = θ(Gc),
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α(Gc) = ω(G), and χv(G) ≤ χ(G). Further, α(G) = α(D(G)) and ω(G) =

ω(D(G)).

Proposition 4.2. If G is a simple perfect graph, then mvr(D(G)) = α(G).

Proof. Since G is perfect, by the Perfect Graph Theorem [20], Gc is perfect, and

so χ(Gc) = ω(Gc). Using Remark 4.1,

α(G) ≤ mvr(D(G)) = χv(Gc) ≤ χ(Gc) = ω(Gc) = α(G).

Corollary 4.3. If G is a simple chordal graph, then α(G) = mvr(D(G)) =

θ2(D(G)) = θ(G).

Proposition 4.4. If G is a simple bipartite graph, mvr(D(G)) = α(G) = θ(G).

Proof. Combine Proposition 4.2 with the Strong Perfect Graph Theorem [6].

Most simple odd cycles are examples of graphs G for which mvr(D(G)) 6=

α(G).

Proposition 4.5. If G is a simple path or simple cycle, then mvr(D(G)) = θ(G).

Proof. For a simple path, simple even cycle, or complete graph on three vertices,

the result follows from Proposition 4.4 and Proposition 4.2. For a simple odd cycle

Cn on n > 3 vertices, mvr(D(Cn)) ≤ θ2(D(Cn)) = θ(D(Cn)) =
⌈

n
2

⌉

. Suppose there

exists a non-degenerate vector representation of D(Cn) with rank α(Cn) =
⌊

n
2

⌋

<
⌈

n
2

⌉

. If S is a maximal independent set of vertices, then there must be a vertex

v adjacent to only one vertex w of S, so that the vector representing v must be a

nonzero multiple of the vector representing w. However, this implies v is adjacent

to the other neighbor of w, a contradiction. Thus

mvr(D(Cn)) = θ(D(Cn)) =
⌈n

2

⌉

.

Although difficult to find, there are examples of graphs for which mvr(D(G)) 6=

θ(G), the smallest of which currently known is on 17 vertices [10].
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