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FOR NON-SYMMETRIC PROBLEMS∗
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Abstract. Iterative aggregation-disaggregation methods for numerical computing of stationary

probability distribution vectors of stochastic matrices are studied. The methods can use arbitrary

numbers of levels and of smoothing steps. A formula for the error propagation is derived. Using this

formula, some asymptotic convergence properties of these methods for non-symmetric problems are

demonstrated.
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1. Introduction. Multi-level solution methods are considered as an advanta-

geous technique in numerical mathematics. Multi-level and multi-grid methods are

popular mainly in numerical solutions of partial differential equations. In this pa-

per we study iterative aggregation-disaggregation (IAD) methods for computing sta-

tionary probability distribution vectors of finite discrete Markov chains. A growing

interest in this field is motivated by many large scale applications in information tech-

nology, data mining, biology, safety and reliability computation, and other theoretical

and practical disciplines.

Basics of the IAD methods are found in Stewart’s book [9]. Many papers show

an efficient performance of the IAD methods, see e.g. [1, 2, 3] and the references

therein. However, theoretical results are rare: only some convergence conditions for

two-level algorithms [4, 5, 6, 8, 9] and for a special kind of multi-level algorithms [7]

are available.

It appears that for non-symmetric problems, the multi-level methods do not pos-

sess the appropriate properties as in the case of symmetric problems [8]. Our paper

focuses on some rules which could be expected for the IAD methods, but which do
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not hold. As a main tool, we introduce a new formula for an error propagation matrix

of the IAD methods with an arbitrary number of levels. While in our recent paper [7]

we started this study by the derivation of an error propagation formula for the IAD

methods without pre-smoothing steps, in this paper we deal with more general IAD

methods with arbitrary numbers of pre-smoothing steps and of post-smoothing steps

in every level.

The paper is organized as follows. In Section 2, the notation and description

of the IAD method are introduced. Section 3 is the main part of the paper. Since

a formula for the error propagation matrix of a general multi-level IAD method is

rather complicated, we present it only for a three-level method with an arbitrary

number of smoothing steps (Theorem 3.1) and for a method with an arbitrary number

of levels but with exactly one pre-smoothing step and one post-smoothing step in

every level (Theorem 3.2). Simple examples are presented in Section 4 to confirm the

absence of several relations which could seem natural for the multi-level IAD methods.

Conclusion and one open question are found in Section 5.

2. Notation and description of the IAD methods. Let us assume that B

is an irreducible stochastic matrix. This means that B has non-negative elements,

the sum of the elements in each column is equal to unity, and there does not exist

any symmetric permutation of the columns and rows of B such that the resulting

permuted matrix B̃ admits a block form

B̃ =

[

B̃11 B̃12

0 B̃22

]

,

where the diagonal blocks B̃11 and B̃22 are square. Let e denote a column vector of

ones of an appropriate size. From the Perron-Frobenius theorem [10], B has a unique

eigenvalue of modulus 1 and there exists a unique positive eigenvector x̂ for which

Bx̂ = x̂ and eT x̂ = 1. Vector x̂ is called a stationary probability distribution vector

of the matrix B. Let us define P = x̂eT and Z = B − P . It is obvious that P 2 = P

and that PZ = ZP is a null matrix.

Many iterative methods can be exploited for computing the eigenvector x̂, for ex-

ample, the power method, Jacobi method, Gauss-Seidel method or their block modifi-

cations. We will study a multi-level approach which is called an iterative aggregation-

disaggregation (IAD) method.

Let us denote by L the number of levels used within the method. The original

(finest, largest) problem belongs to level m = 1 and the coarsest (smallest) problem is

solved in level m = L. In every level up to the coarsest one, aggregation groups Gmj

of indices of elements are chosen, where m = 1, 2, . . . , L − 1 and j = 1, 2, . . . , Nm+1.

Thus Nm+1 is the number of aggregation groups in level m and at the same time it is
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the number of elements in level m+1 for m = 1, 2, . . . , L− 1. The size of the original

matrix B is N1 and the size of the coarsest problem solved is NL.

Without loss of generality, we suppose that in every level m = 1, 2, . . . , L− 1, the

indices are divided into groups in such a manner that from i1 ∈ Gk1
, i2 ∈ Gk2

and

i1 < i2, it follows that k1 < k2. In other words, smaller indices fall into groups with

smaller indices.

Let us denote by [A]ij an element of a matrix A in row i and column j. Transi-

tions between levels are enabled by reduction and prolongation matrices. Reduction

matrices Rm map from R
Nm into R

Nm+1 ,

[Rm]ij =

{

1 if j ∈ Gmi

0 otherwise.

Prolongation matrices S(x)m map from R
Nm+1 into R

Nm depending on a positive

vector x ∈ R
Nm ,

[S(x)m]ij =

{

xi∑
k∈Gmj

xk
if i ∈ Gmj ,

0 otherwise.

In every level m = 1, 2, . . . , L − 1, some smoothing steps are performed before

and after the solution of the coarser problem of level m + 1. The smoothing steps,

also called basic iterations, are represented by the power method in our algorithm.

A single cycle of the multi-level IAD algorithm can be described as follows. A con-

stant τ is a threshold for the size of problems the solution of which is carried out

exactly.

Procedure IAD (input: B, x; output: y)

if size(B) < τ solve By = y, eT y = 1;

else

x := Bµx;

build R and S(x) according to aggregation groups in a current level;

call Procedure IAD (input: RBS(x), Rx; output: y);

y := BνS(x)y.

In the main program the procedure is first called with the input parameters B, the

original irreducible non-negative matrix, and x as an initial approximation to x̂. One

cycle of the IAD method is represented by one call of this procedure in the original

level. After every cycle, y is assigned to x and next cycle is performed. The procedure

is executed until the difference between x and y in the finest level is sufficiently small.

Let µm and νm denote the numbers of smoothing steps in level m before and

after the coarsening of the problem, respectively. Using this notation we can describe
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a single multi-level cycle of the IAD algorithm. Let xn be a current approximation

to the solution x̂. Then the next cycle of the IAD procedure yields xn+1 in the form

xn+1 = Bν1S(u1)1v2,

where

u1 = Bµ1xn,

um =
(

Rm−1 · · ·R1BS(u1)1 · · ·S(um−1)m−1

)µm
Rm−1um−1,

vm =
(

Rm−1 · · ·R1BS(u1)1 · · ·S(um−1)m−1

)νm
S(um)mvm+1

for m = 2, 3, . . . , L − 1. Vector vL is the exact solution of the coarsest problem

TLx = x, where TL is

TL = RL−1 · · ·R1BS(u1)1 · · ·S(uL−1)L−1.

The vectors uk are computed during the coarsening process (the first half of a single

multi-level IAD cycle) while the vectors vk are computed during the returning back

to finer levels (the second half of a single IAD cycle).

Let the identity matrix be denoted by I. Let T = A−1

1 A2 come from some regular

splitting [10] of A1 − A2 = I − B, A−1
1 ≥ 0, A2 ≥ 0. Thus T x̂ = x̂. In addition, let

TB = BT . Then the iteration matrices in levels m = 1, 2, . . . , L− 1

Bm = Rm−1 · · ·R1BS(u1)1 · · ·S(um−1)m−1

can be substituted by the more general

Tm = Rm−1 · · ·R1TS(u1)1 · · ·S(um−1)m−1.

This generalization will be used in theorems in Section 3. The matrix T can vary

during the computation process. However, for simplicity’s sake, we will not consider

variable T , and, in our numerical examples, only T = B will be used. In the coarsest

level, T 6= B could be used, but then the definitions of matrices Rm and S(x)m would

need to be changed. This is why we have used only TL = BL in the coarsest level.

Lemma 2.1. The iteration matrices

Tm = Rm−1 · · ·R1TS(u1)1 · · ·S(um−1)m−1,

m = 1, 2, . . . , L, are non-negative and irreducible. If T = B then Tm is stochastic.

Proof. We have T ≥ 0 and thus Tm ≥ 0 yields from the definitions of Rm and

of S(x)m. The irreducibility follows from the irreducibility of T . From eTB = eT we

obtain eTBm = eT .
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Let us denote

P (uk, uk+1, . . . , um−1)km = S(uk)k · · ·S(um−1)m−1Rm−1 · · ·Rk,

where uj are positive vectors and uj ∈ R
Nj , j = k, . . . ,m − 1. During the proofs in

Section 3 we will use the abbreviation Pm ≡ P (u1, u2, . . . , um−1)1m and P1 = I.

Lemma 2.2. The following two relations hold.

1. For any positive x ∈ R
Nk we have S(x)kRkx = x.

2. Matrices P (uk, uk+1, . . . , um−1)km are projections, for 1 ≤ k < m ≤ L.

Proof. The first part follows from the definition of Rk and S(x)k. The second

part follows from RjS(x)j = I, j = 1, . . . , L− 1.

3. Error propagation formulae. In this section we introduce our main re-

sults. We derive the error propagation matrices of the IAD methods described in

Section 2. Due to the complexity of the involved terms, we restrict ourselves to two

cases: (i) three levels of hierarchy, L = 3, and arbitrary numbers of pre-smoothing

steps and of post-smoothing steps, i. e. arbitrary µm and νm in both levels m = 1, 2;

and (ii) arbitrary number L of levels and exactly one pre-smoothing step and one

post-smoothing step in every level, i. e. µm = νm = 1, m = 1, 2, . . . , L − 1. Deriving

the error propagation matrices for these two kinds of methods within proofs of the

following two theorems shows the main ideas and tools which can be used for deducing

error propagation formulae for more complicated methods.

Theorem 3.1. Let us consider a three-level IAD method, L = 3, with µm+νm ≥

1, m = 1, 2. The error in cycle n is

xn+1 − x̂ = J (xn) (xn − x̂).

Let us denote u1 = T µ1xn, u2 =
(

R1TS(u1)1
)µ2

R1u1, P1 = I, P2 = S(u1)1R1 and

P3 = S(u1)1S(u2)2R2R1.

1. If µ2 ≥ 1 and ν2 ≥ 1 then

J(xn) = T ν1

(

(

P2T
)ν2(

I − P3Z
)

−1
(

(

P2 − P3

)

µ2−1
∑

k=0

(

TP2

)k
(T − I) + I − P3

)

+

ν2−1
∑

k=0

(

P2T
)k(

I − P2

)

)

T µ1 .

2. If µ2 ≥ 1 and ν2 = 0 then

J(xn) = T ν1
(

I − P3Z
)

−1
(

(

P2 − P3

)

µ2−1
∑

k=0

(

TP2

)k
(T − I) + I − P3

)

T µ1 .
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3. If µ2 = 0 and ν2 ≥ 1 then

J(xn) = T ν1

(

(

P2T
)ν2(

I − P3Z
)

−1(

I − P3

)

+

ν2−1
∑

k=0

(

P2T
)k(

I − P2

)

)

T µ1 .

Proof. We start with a proof of the first assertion for µ2 ≥ 1 and ν2 ≥ 1.

Let us follow the computation during a single cycle of the considered IAD method.

First u1 is computed, u1 = T µ1xn. Then this vector is reduced and multiplied by
(

R1TS(u1)1
)µ2

, and thus

u2 =
(

R1TS(u1)1
)µ2

R1u1 =
(

R1TS(u1)1
)µ2

R1T
µ1xn.

In the third level, the computation of the eigenvector v3 of the reduced matrix is

carried out exactly for T = B,

R2R1BS(u1)1S(u2)2v3 = v3,

and eT v3 = 1. None of the eigenvalues of R2R1ZS(u1)1S(u2)2 are equal to unity, and

v3 =
(

I −R2R1ZS(u1)1S(u2)2
)

−1
R2R1x̂.

On the way back to the finest level, the vector v3 is prolonged by a multiplication by

S(u2)2 to level m = 2 and then multiplied by the iteration matrix
(

R1TS(u1)1
)ν2

in

level m = 2,

v2 =
(

R1TS(u1)1
)ν2

S(u2)2v3.

And finally,

xn+1 = v1 = T ν1S(u1)1v2.

Thus we have

xn+1 − x̂ = T ν1S(u1)1
(

R1TS(u1)1
)ν2

S(u2)2
(

I −R2R1ZS(u1)1S(u2)2
)

−1
R2R1x̂− x̂

= T ν1
(

P2T
)ν2(

I − P3Z
)

−1
P3x̂− x̂.

Now we can rewrite the term P3x̂ using Lemma 2.2,

P3x̂ = S(u1)1S(u2)2R2

(

R1x̂− u2 + u2

)

= S(u1)1u2 + S(u1)1S(u2)2R2

(

R1x̂− u2

)

= S(u1)1
(

R1TS(u1)1
)µ2

R1T
µ1xn + S(u1)1S(u2)2R2

(

R1x̂

−
(

R1TS(u1)1
)µ2

R1T
µ1xn

)

= P2

(

TP2

)µ2
T µ1xn + P3

(

x̂−
(

TP2

)µ2
T µ1xn

)

.
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Using P2T
µ1xn = T µ1xn and T x̂ = x̂, the term

(

TP2

)µ2
T µ1xn is

(

TP2

)µ2
T µ1xn =

(

TP2

)µ2−1(

TP2T
µ1xn − TT µ1x̂+ T µ1x̂(3.1)

−T µ1xn + T µ1xn

)

=
(

TP2

)µ2−1(

TT µ1xn − TT µ1x̂+ T µ1 x̂− T µ1xn + T µ1xn

)

=
(

TP2

)µ2−1(

T − I
)

T µ1
(

xn − x̂
)

+
(

TP2

)µ2−1
T µ1xn

= · · ·

=
(

(

TP2

)µ2−1
+ · · ·+ TP2

)

(

T − I
)

T µ1
(

xn − x̂
)

+TT µ1
(

xn − x̂
)

+ x̂,

which yields

P3x̂ =
(

P2 − P3

)

((

(TP2)
µ2−1 + · · ·+ TP2 + I

)

(T − I) + I
)

T µ1
(

xn − x̂
)

+ P2x̂.

We also have

P2x̂ = S(u1)1R1x̂ = S(u1)1R1

(

x̂− u1 + u1

)

= u1 + P2

(

x̂− u1

)

=

= T µ1xn + P2T
µ1
(

x̂− xn

)

= (I − P2)T
µ1
(

xn − x̂
)

+ x̂.

Then

xn+1 − x̂ = T ν1(P2T )
ν2
(

I − P3Z
)

−1
(

(

P2 − P3

)

(

(

(TP2)
µ2−1 + · · ·(3.2)

· · ·+ TP2 + I
)

(T − I) + I
)

T µ1
(

xn − x̂
)

+(I − P2)T
µ1
(

xn − x̂
)

+ x̂
)

− x̂

= T ν1(P2T )
ν2
(

I − P3Z
)

−1
(

(

P2 − P3

)

(

(

(TP2)
µ2−1 + · · ·

· · ·+ TP2 + I
)

(T − I) + I
)

+ (I − P2)
)

T µ1
(

xn − x̂
)

+T ν1(P2T )
ν2 x̂− x̂.

Exploiting similar tools as in (3.1) we can show that

T ν1(P2T )
ν2 x̂− x̂ = T ν1

(

(P2T )
ν2−1 + · · ·+ I

)

(I − P2)T
µ1(xn − x̂).(3.3)

Combining (3.2) and (3.3) we get the first part of the theorem. The second one can be

easily derived using a similar technique. Using either similar tools as for the previous

parts or Theorem 2 of paper [7] yields the third part of the theorem.

Theorem 3.2. The error in cycle n of a multi-level IAD method with an arbitrary

number L ≥ 2 of levels and with one pre-smoothing step and one post-smoothing step

in every level (that is µm = νm = 1 for m = 1, 2, . . . , L− 1) is

xn+1 − x̂ = J (xn) (xn − x̂),
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where

(a)

J(xn) = T

L−1
∏

k=2

(PkT )(I − PLZ)−1

L−1
∑

k=1

(Pk − Pk+1)Mk−1

+T

L−2
∑

m=1

m
∏

k=2

(PkT )

m
∑

k=1

(Pk − Pk+1)Mk−1;

(b) M0 = T and

Mk =
(

T +

k
∑

j=2

TPj(T − I)
)

T,

for k = 1, 2, . . . , L− 2;

(c) P1 = I and

Pk = P (u1, u2, . . . , uk−1)1k = S(u1)1 · · ·S(uk−1)k−1Rk−1 · · ·R1,

for k = 2, 3, . . . , L;

(d) u1 = Txn, u2 = R1T
2xn, u3 = R2R1TP2T

2xn and

uk = Rk−1 · · ·R1TPk−1TPk−2 · · ·TP3TP2T
2xn,

for k = 4, . . . , L− 1.

Proof. We present the derivation of the formula only for L = 5 which is not too

much complicated but provides with a sufficiently general insight. We have

u1 = Txn,

u2 = R1TS(u1)R1u1 = R1Tu1 = R1T
2xn,

u3 = R2R1TS(u1)1S(u2)2R2u2 = R2R1TS(u1)1u2 = R2R1TS(u1)1R1T
2xn

= R2R1TP2T
2xn,

u4 = R3R2R1TS(u1)1S(u2)2S(u3)3R3u3 = · · · = R3R2R1TP3TP2T
2xn.

Since from Lemma 2.2 we have S(uk)kRkuk = uk, k = 1, . . . , 4, note that

P2Txn = Txn,(3.4)

P3T
2xn = P2T

2xn,(3.5)

P4TP2T
2xn = P3TP2T

2xn,(3.6)

P5TP3TP2T
2xn = P4TP3TP2T

2xn.(3.7)
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In the fifth (finest) level, the computation of the eigenvector is carried out exactly

with T = B,

R4R3R2R1BS(u1)1S(u2)2S(u3)3S(u4)4v5 = v5,

eT v5 = 1. Matrix I −R4 · · ·R1ZS(u1)1 · · ·S(u4)4 is invertible, therefore

v5 =
(

I −R4 · · ·R1ZS(u1)1 · · ·S(u4)4
)

−1
R4 · · ·R1x̂.

Further computation in finer levels gradually yields

v4 = R3R2R1TS(u1)1S(u2)2S(u3)3S(u4)4v5,

v3 = R2R1TS(u1)1S(u2)2S(u3)3v4,

v2 = R1TS(u1)1S(u2)2v3,

xn+1 = v1 = TS(u1)1v2.

Then

xn+1 − x̂ = TP2TP3TP4T
(

I − P5Z
)

−1
P5x̂− x̂.(3.8)

Using (3.4)-(3.7) we have

P5x̂ = P5(x̂− TP3TP2T
2xn) + P4TP3TP2T

2xn

and

TP3TP2T
2xn =

(

TP3TP2(T −I)T+TP2(T−I)T +T 2
)

(xn− x̂)+ x̂ = M3(xn− x̂)+ x̂,

where M3 = TP3TP2(T − I)T + TP2(T − I)T + T 2. Thus

P5x̂ = (P4 − P5)M3(xn − x̂) + P4x̂.

Computing P4x̂ and P3x̂ in a similar fashion, we obtain

P4x̂ = (P3 − P4)M2(xn − x̂) + P3x̂,(3.9)

P3x̂ = (P2 − P3)M1(xn − x̂) + P2x̂,(3.10)

P2x̂ = (I − P2)M0(xn − x̂) + x̂,(3.11)

where M2 = TP2(T − I)T + T 2, M1 = T 2 and M0 = T . Thus we have

P5x̂ =
(

(P4 − P5)M3 + (P3 − P4)M2 + (P2 − P3)M1 + (I − P2)M0

)

(xn − x̂) + x̂.

Substituting this into (3.8), denoting P1 = I and using Zx̂ = 0, we get

xn+1 − x̂ = TP2TP3TP4T
(

I − P5Z
)

−1
((

(P4 − P5)M3 + (P3 − P4)M2(3.12)

+(P2 − P3)M1 + (P1 − P2)M0

)

(xn − x̂) + x̂
)

− x̂

= TP2TP3TP4T
(

I − P5Z
)

−1
(

4
∑

k=1

(Pk − Pk+1)Mk−1

)

(xn − x̂)

+TP2TP3TP4T x̂− x̂.
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Finally, using (3.9)-(3.11), we obtain

TP2TP3TP4T x̂− x̂ = TP2TP3T
(

(P3 − P4)M2 + (P2 − P3)M1

+(P1 − P2)M0

)

(xn − x̂)

+TP2T
(

(P2 − P3)M1 + (P1 − P2)M0

)

(xn − x̂)

+T (P1 − P2)M0(xn − x̂).

Substituting this last formula into (3.12) completes the proof.

Example 3.3. Assume a three-level IAD method, L = 3, and three simple

choices of parameters µk and νk. According to both Theorems 3.1 and 3.2, for µ1 =

µ2 = ν1 = ν2 = 1 the error propagation matrix J is

J = TP2T (I − P3Z)−1
(

(P2 − P3)T + I − P2

)

T + T (I − P2)T.(3.13)

When we chose µ1 = µ2 = 0 and ν1 = ν2 = 2, from Theorem 3.1 we obtain

J = T 2
(

(P2T )
2(I − P3Z)−1(I − P3) + (I + P2T )(I − P2)

)

.(3.14)

When we chose µ1 = µ2 = 2 and ν1 = ν2 = 0, from Theorem 3.1 we have

J = (I − P3Z)−1

(

(P2 − P3)
(

I + TP2

)

(T − I) + I − P3

)

T 2.(3.15)

4. Symmetric and non-symmetric matrices. In this part we will exploit the

8× 8 non-symmetric irreducible stochastic matrix

B =



























ǫ 1 0 0 0 0 0 β

0 0 δ + ζ 1 α δ 0 0

1 0 0 0 0 0 0 α+ γ

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

ζ 0 β 0 1 γ 0 0

δ 0 0 0 0 0 1 ǫ



























.(4.1)

We apply the multi-level IAD methods to the matrix B for several choices of param-

eters α, β, γ, δ, ǫ and ζ. After setting the values of these parameters, the columns

are normalized in such a way that the resulting matrix is stochastic.

Example 4.1. Consider the matrix B given by (4.1), L = 3, N1 = 8, N2 = 4,

N3 = 2 and the dimensions of aggregation groups equal to Nm/Nm+1 in every level m.
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Table 4.1

Spectral radii ρ(J(x̂)) for L = 3, N1 = 8, N2 = 4, N3 = 2 and for matrix B defined by (4.1)

with different choices of α, β, γ.

(δ, ǫ, ζ) = (0, 0, 0), (α, β, γ): (10, 0, 0) (0, 10, 0) (0, 0, 10)

µk = 1, νk = 1 0.2447 1.1144 0.3414

µk = 0, νk = 2 1.1419 0.2916 0.3513

µk = 2, νk = 0 0.5069 0.3676 1.0729

Table 4.2

Spectral radii ρ(J(x̂)) for either L = 2 or L = 3 and µk = νk = 1 for matrix B defined by (4.1)

with different choices of δ, ǫ, ζ.

(α, β, γ) = (0, 0, 0), (δ, ǫ, ζ): (10, 0, 0) (0, 10, 0) (0, 0, 10)

L = 2, N2 = 4 0.0789 2.0463 0.1289

L = 2, N2 = 2 0.9090 0.4092 1.5757

L = 3, N2 = 4, N3 = 2 1.3390 0.3448 0.6861

We examine three choices of parameters µk, νk, k = 1, 2: (i) µk = νk = 1; (ii) µk = 0,

νk = 2; (iii) µk = 2, νk = 0. See Table 4.1 for the approximate asymptotic spectral

radii ρ(J(x̂)) of the error propagation matrices for δ = ǫ = ζ = 0 and for different

choices of α, β, γ. The spectral radii are calculated according to (3.13)-(3.15). In

our paper [7] the hypothesis appeared, that keeping the number of smoothing steps

constant in all levels, i.e. µk + νk constant for every k, leads to the same asymptotic

convergence rate. It can be seen from the table that this hypothesis is false. Moreover,

the convergence itself is also not kept for different µk, νk, but constant µk + νk.

Example 4.2. In this example we examine the IAD methods for the matrix B

given by (4.1) where α = β = γ = 0. We compare three types of methods: (i) a two-

level method with N2 = 4; (ii) a two-level method with N2 = 2; (iii) a three-level

method with N2 = 4; N3 = 2. The numbers of smoothing steps are “symmetric”:

µk = νk = 1. Three choices of parameters δ, ǫ, ζ lead to three different situations,

when one of the methods diverges and the other ones converge locally. Thus there

is no apparent relation between local convergence of the IAD algorithms of the same

kind with different numbers of levels.

Remark 4.3. When a stochastic matrix B is symmetric or satisfies B = DSD−1

where S is symmetric and D is diagonal, then all of our numerical experiments have

reflected that ρ(J(x̂)) ≤ 1. Although the proof of this is known [8] for two-level IAD

methods, the statement for general multi-level IAD methods has not been proved

yet.

5. Conclusion. New convergence characteristics of the multi-level IAD methods

are introduced in this paper. Especially, we present an error propagation formula

which is a generalization of our recent result [7]. Using the formula it can be confirmed
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that the local convergence of the multi-level IAD methods is not guaranteed for non-

symmetric problems in general.

The derivation of the error propagation formula can serve as a model: the tools

of the proofs of Theorems 3.1 and 3.2 can be exploited to obtain error propagation

formulae for more complicated multi-level IAD methods. For example, the formulae

for arbitrary number of levels L and for arbitrary numbers of smoothing steps µk and

νk in every level k = 1, 2, . . . , L− 1 can be derived. This can lead to the estimation of

local convergence rates of particular methods for particular matrices which can help

in searching general conditions under which the local convergence of the IAD methods

for non-symmetric problems is guaranteed.

In paper [7], a new hypothesis was announced, that the asymptotic rate of conver-

gence does not depend on the numbers of pre- and post-smoothing steps but depends

solely on the sum of these two quantities. Example 4.1 disproves it. In Example 4.2

we give a counter-example of another hypothesis, which states that for µk = νk,

k = 1, 2, . . . , L − 1, there exists some relation between the local convergence of IAD

with L levels and with L+ 1 levels.

Our numerical experiments support a new hypothesis: if a stochastic matrix B

is symmetric or similar to a symmetric matrix S such that B = DSD−1 and D

is diagonal, then the asymptotic spectral radius of the error propagation matrix is

bounded from above by unity for an arbitrary number of levels and of smoothing steps

and for any choice of aggregation groups. This hypothesis was proved for two-level

IAD methods only [8], but for general multi-level IAD methods it has not been proved

yet.
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