

ON CONVERGENCE OF INFINITE MATRIX PRODUCTS*

OLGA HOLTZ†

Abstract. A necessary and sufficient condition for the convergence of an infinite right product of matrices of the form

$$A := \left[\begin{array}{cc} I & B \\ 0 & C \end{array} \right],$$

with (uniformly) contracting submatrices C, is proven.

Key words. Infinite matrix products, RCP sets.

AMS subject classifications. 15A60, 15A99

1. Introduction. Consider the set of all matrices in $\mathbb{C}^{d\times d}$ of the form

$$A := \left[\begin{array}{cc} I_s & B \\ 0 & C \end{array} \right],$$

where I_s denotes the identity matrix of order s < d.

Matrices (1) are known to form an LCP set whenever the submatrices B are uniformly bounded and the submatrices C are uniformly contracting, that is, satisfy the condition $\|C\| \leq r$ for some fixed matrix (i.e., submultiplicative) norm $\|\cdot\|$ on $\mathbb{C}^{(d-s)\times(d-s)}$ and some constant r<1; see, e.g., [1]. To recall, a set Σ has the LCP (RCP) property if all left (right) infinite products formed from matrices in Σ are convergent.

Matrices of the form (1) with uniformly bounded submatrices B and uniformly contracting submatrices C do not necessarily form an RCP set. (They do form such a set if and only if they satisfy a very stringent condition given in Corollary 2.3 below.) However, there exists a simple criterion that can be used to check whether a particular right infinite product formed from such matrices converges.

2. A convergence test.

THEOREM 2.1. Let $(A_n)_{n\in\mathbb{N}}$ be a sequence of matrices of the form (1) and let

$$||C_n|| \le r < 1$$
 for all $n \in \mathbb{N}$

for some matrix norm $\|\cdot\|$. The sequence $(P_n := A_1 A_2 \cdots A_n)$ converges if and only if so does the sequence $(B_n (I - C_n)^{-1})$. In this event,

$$\lim_{n \to \infty} P_n = \begin{bmatrix} I & \lim_{n \to \infty} B_n (I - C_n)^{-1} \\ 0 & 0 \end{bmatrix}.$$

^{*}Received by the editors on 6 September 2000. Accepted for publication on 21 September 2000. Handling Editor:Daniel Hershkowitz.

[†] Department of Computer Sciences, University of Wisconsin, Madison, Wisconsin 53706 U.S.A. (holtz@cs.wisc.edu). This work was supported in part by the Clay Mathematics Institute.

Proof. To prove the necessity, partition P_n conformably with A_n . Then

$$P_n = \begin{bmatrix} I & X_n \\ 0 & C_1 C_2 \cdots C_n \end{bmatrix}$$
, where $X_n := \sum_{i=0}^n B_{n-i} (C_{n+1-i} C_{n+2-i} \cdots C_n)$.

If (P_n) converges, then $\lim_{n\to\infty} (X_n - X_{n-1}) = 0$. Also, $\|(I - C_n)^{-1}\| \le 1/(1-r)$ for all $n \in \mathbb{N}$. But $X_n = B_n + X_{n-1}C_n$, and thus

$$B_n(I - C_n)^{-1} - X_{n-1} = (X_n - X_{n-1})(I - C_n)^{-1} \to 0 \text{ as } n \to \infty.$$

Hence $\lim_{n\to\infty} B_n(I-C_n)^{-1} = \lim_{n\to\infty} X_n$.

To prove the sufficiency, without loss of generality one can assume that s = d - s. Indeed, simply replace each A_n by

$$\widetilde{A_n} := \left[egin{array}{cc} I_{\max\{s,d-s\}} & \widetilde{B_n} \\ 0 & \widetilde{C_n} \end{array}
ight],$$

where

$$\widetilde{B_n} := \begin{cases} \begin{bmatrix} B_n & 0_{s \times (2s-d)} \end{bmatrix} & \text{if } s \ge d-s \\ \begin{bmatrix} B_n \\ 0_{(d-2s) \times (d-s)} \end{bmatrix} & \text{if } s < d-s \end{cases},$$

$$\widetilde{C_n} := \begin{cases} \begin{bmatrix} C_n & 0_{(d-s) \times (2s-d)} \\ 0_{(2s-d) \times (d-s)} & 0_{2s-d} \end{bmatrix} & \text{if } s \ge d-s \\ C_n & \text{if } s < d-s \end{cases}$$

Then the matrices $\widetilde{A_n}$ satisfy all the assumptions of the theorem and the sequence $(B_n(I-C_n)^{-1})$ (the product P_n) converges if and only if so does the sequence $(\widetilde{B_n}(I-\widetilde{C_n})^{-1})$ (the product $\widetilde{P_n}$).

Thus, assume that s = d - s. Note that if the sequence $(B_n(I - C_n)^{-1})$ converges, then the sequence (B_n) is bounded, since $||I - C_n|| \le 1 + r$ for all n. Now, let

$$D_n := X_n - B_n (I - C_n)^{-1}$$

$$Y_n := B_{n+1} (I - C_{n+1})^{-1} - B_n (I - C_n)^{-1}$$

for all $n \in \mathbb{N}$. Then

(2)
$$D_{n+1} = (D_n - Y_n)C_{n+1},$$

hence

$$||D_{n+1}|| \le (||D_n|| + ||Y_n||)||C_{n+1}|| \le (||D_n|| + ||Y_n||)r.$$

180 Olga Holtz

Repeated use of this inequality gives

$$||D_n|| \le \sum_{i=1}^{n-1} ||Y_{n-i}|| r^i.$$

This implies, in particular, that

$$S:=\lim\sup_{n\to\infty}\|D_n\|<\infty.$$

Since $\lim_{n\to\infty} Y_n = 0$, the identity (2) and the upper bound on $||C_n||$ imply that $S \leq rS$, therefore S = 0, that is, $\lim_{n\to\infty} D_n = 0$. \square

The obtained criterion of convergence can be used to make two more observations in the same spirit.

COROLLARY 2.2. Let $(A_n)_{n\in\mathbb{N}}$ be a sequence of matrices of the form (1) such that the sequence (C_n) converges to a matrix C with spectral radius smaller than 1. Then the sequence $(P_n := A_1 A_2 \cdots A_n)$ converges if and only if so does the sequence (B_n) . In this event,

$$\lim_{n \to \infty} P_n = \begin{bmatrix} I & \lim_{n \to \infty} B_n (I - C)^{-1} \\ 0 & 0 \end{bmatrix}.$$

Proof. If $\varrho(C)$ < 1, then there exists a matrix norm $\|\cdot\|$ on $\mathbb{C}^{(d-s)\times(d-s)}$ such that $\|C\|$ < 1; see, e.g., [2, p. 297, Lemma 5.6.10]. Thus, $\|C_n\| \le r$ for all $n \ge N$ for some r < 1 and some $N \in \mathbb{N}$, and the assumption of Theorem 2.1 is then satisfied. The product P_n converges whenever the product $A_N A_{N+1} \cdots$ converges, therefore (P_n) has a limit whenever (B_n) has one. On the other hand, the sequence $((I - C_n)^{-1})_{n=N}^{\infty}$ is bounded, so the necessity argument from the proof of Theorem 2.1 shows that the convergence of (B_n) is also necessary. □

COROLLARY 2.3. A set Σ consisting of matrices of the form (1) with uniformly contracting submatrices C is an RCP set if and only if

(3)
$$B_1(I - C_1)^{-1} = B_2(I - C_2)^{-1}$$
 for all $A_1, A_2 \in \Sigma$,

where

$$A_i = \left[\begin{array}{cc} I & B_i \\ 0 & C_i \end{array} \right], \qquad i = 1, 2.$$

Proof. Given $A_1, A_2 \in \Sigma$, apply Theorem 2.1 to the product $A_1A_2A_1A_2\cdots$ to see that the condition (3) is necessary and sufficient for the convergence of such a product. But if it is satisfied for all pairs of matrices from Σ , then it is sufficient for the convergence of any right product of matrices from Σ . \square

On convergence of infinite matrix products

181

Acknowledgements. I am grateful to Professor Hans Schneider for his critical reading of the manuscript and to the referee for valuable suggestions.

REFERENCES

- I. Daubechies and J. Lagarias. Sets of matrices all infinite products of which converge. Linear Algebra Appl., 161:227-263, 1992.
 R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, Cambridge, 1985.