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SEPARABLE CHARACTERISTIC POLYNOMIALS
OF PENCILS AND PROPERTY L*

JOHN MAROULASY, PANAYIOTIS J. PSARRAKOS*, AND MICHAEL J. TSATSOMEROS!

Abstract. The condition (SC): det(I —sA—tB) = det(I —sA) det(I —tB) for all scalars s, ¢, has
naturally and long been connected to eigenvalue properties of the matrix pair A, B. In particular,
Taussky used the notion of property L to generalize the Craig-Sakamoto Theorem by showing that
when A and B are normal, (SC) is equivalent to AB = 0. The relation of (SC) to the eigenspaces
of A, B and sA + tB is examined in order to obtain necessary and/or sufficient conditions in terms
of eigenspaces and space decompositions. A general criterion for (SC) based on the spectrum of the
n X n matrix polynomial A2»+1J — A\2" A — B is also presented.
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1. Introduction. Two quadratic forms zt Az and x!Bz, where z is a vector of
normally distributed independent random variables, are independent if and only if
AB = 0. This is known as the Craig-Sakamoto Theorem and can be equivalently
stated as follows. Given n X n real symmetric matrices A and B,

det(I — sA —tB) =det(I — sA) det(I —tB) for all s,t € R if and only if AB =0.

There are several proofs of this result in the literature, most recently by Olkin [8] and
by Li [1]. An extensive bibliography on this theorem and related topics is available
from Dumais and Styan [2]. Taussky [9] provided a generalization of the Craig-
Sakamoto Theorem with the assumption of symmetry replaced by normality of A and
B and the field of scalars extended to C. The key idea in [9] was to connect the
separable characteristic polynomial condition (cf. Theorem 2.1), namely,

(SC) det(I — sA —tB) = det(I — sA) det(I —tB) for all s,t € C,

with pairs of matrices having property L. Recall that according to Motzkin and
Taussky [7] (see also [5, p. 96]), if A has eigenvalues p; ..., u, and B has eigen-
values v, ...,V,, the pair of matrices A, B has property L (L stands for linear) if
for all scalars s,t and for some fixed pairing of the u; and v;, the matrix sA + tB
has eigenvalues sp; +tv; (1 =1,...,n). In [9] (SC) is transformed via homogeneous
coordinates into an equation about the characteristic polynomial

det(AI — sA — tB)
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of the pencil sA + tB. Tt is then shown that (SC) implies that the pair A, B has
property L with an additional requirement: either pu; = 0 or v; = 0 in the said pairing
of the eigenvalues of A and B.

In passing we mention that property L is a specialization of property P, namely
that every polynomial function f(A, B) has eigenvalues f(u;, v;) for some fixed pairing
of the eigenvalues u; of A and v; of B. It is known that property P is equivalent to
simultaneous triangularizability of A and B [6]. Property P implies property L, but
the converse is not true [7].

Our goal is to find necessary, sufficient or equivalent conditions to (SC), under
assumptions on A and B other than normality or no assumptions at all. This is done
in Section 2 by considering the implications of (SC) with regard to the eigenspaces
of A and B. In particular, when 0 is a semisimple eigenvalue of A and B, we show
that (SC) implies (and in many cases is equivalent to) a pairing of the nullspaces of A
and B so as to form a decomposition of C". Also, as AB = 0 is clearly sufficient for
(SC) to hold, we investigate under what conditions, other than normality, AB =0 is
necessary for (SC). In Section 3, we relate (SC) to an appropriately defined matrix
polynomial and to a factorization of its characteristic polynomial, resulting in a new
practical criterion for (SC).

We comment that as in (SC) the roles of A and B are interchangeable, it should
be clear that certain results in the sequel hold with the roles of A and B swapped,
even if this is not explicitly mentioned. Also notice that (SC) holds if and only if it
holds for A* and B!, resulting in some straightforward interpretations of the results
to follow.

Some notational conventions are now in order. For X € M, (C), denote its
spectrum by o(X), viewed as a multiset with the eigenvalues of X repeated according
to their multiplicities. The spectral radius of X is denoted by p(X), its image by
Im(X), its null space by Nul(X), and its generalized eigenspace corresponding to an
eigenvalue A by

Ex(A\) =Nul (X —AD)™),

where m = ind »(X) is the size of the largest Jordan block associated with A in the
Jordan canonical form of X. (By convention, ind »(X) = 0 means A ¢ o(X).) Recall
that X is a semisimple eigenvalue of X if ind x(X) = 1, in which case the geomet-
ric multiplicity dimNul(A) equals to the algebraic multiplicity dimEx (A). Also, C"
always admits the direct sum decomposition

"= P Ex(O).

A€o (X)

2. Condition (SC) and the eigenspaces of A and B. The following funda-
mental characterization of matrices that satisfy (SC) is essentially found within the
proof of the main result in [9].

THEOREM 2.1. Let A,B € M,,(C). The following are equivalent.

(i) Condition (SC) holds.
(ii) For every s,t € C, o(sA®tB) = o ((sA+tB) ® 0,,), where O,, denotes the zero
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matriz in My(C).
(iii) The pair A, B has property L and for the associated pairing of the eigenvalues p;
and v; of A and B, respectively, either u; =0 or v; = 0.

Proof. Substituting s/\ for s and ¢/\ for ¢t in (SC), we obtain the following
expression that is equivalent to (SC) :

1) A" det(AI — sA — tB) = det(AI — sA) det(AI — tB).

Consequently, (SC) is equivalent to each eigenvalue of sA + tB being either of the
form sy with p € o(A), or of the form tv with v € o(B), for every s and ¢ in C. Also
the polynomial in A in the left-hand side of (1) has n additional zero roots, proving
the implication (i) = (ii). The converse is straightforward as (ii) clearly implies (1).
The equivalence of (ii) and (iii) follows readily from the definition of property L. O

COROLLARY 2.2. Let A, B € M, (C) satisfy (SC). Let k1 and ko be the algebraic
multiplicities of the eigenvalue 0 of A and B, respectively. Then the following hold.
(1) k1 + ky >n.

(i) If A is nonsingular, then B must be nilpotent.
(iii) Ifindo(A) <1 and indo(B) < 1, then rank(A) + rank(B) < n.

Proof. (i) According to part (ii) of Theorem 2.1, o(sA®tB), viewed as a multiset,
contains at least n elements equal to 0, and equals o(sA) U o(¢tB).

(ii) From (i) we have that if k; = 0, then ky = n.
(iii) By the index assumptions, k; + rank(A4) = n and k2 + rank(B) = n. Thus from
(i) it follows that rank(A) + rank(B) <n. O

Assuming that 0 is a semisimple eigenvalue of A and B, we can now show that
(SC) implies a pairing of the nullspaces of A and B analogous to the pairing of the
eigenvalues of matrices that satisfy (SC); cf. Theorem 2.1 (iii).

THEOREM 2.3. Let A,B € M, (C) with indg(4) < 1 and indo(B) < 1 and
suppose that (SC) holds. Then C" = Nul(A) + Nul(B).

Proof. First assume that Nul(4) NNul(B) = {0}. Since ind (A4) < 1, dimNul(A)
equals the algebraic multiplicity of 0. A similar assertion is true for B. So by Corollary
2.2, dimNul(A4)+ dimNul(B) > n. However, by assumption, Nul(4) N Nul(B) = {0},
and thus C" = Nul(4) @ Nul(B).

Now if Nul(4) N Nul(B) # {0}, let {u1,...,up} be a basis for Nul(4) N Nul(B) and

complete it to a basis {ui,...,u,} of C". Define S = (u1]| ... |u,) € My,(C) and
observe that since ind g(4) < 1 and ind o(B) < 1, we have
(2) SAS=0,® A; and S™'BS=0,@ By.

As (SC) is invariant under common similarity transformations of A and B, we may
without loss of generality assume that A and B are equal to the right-hand sides in
(2), respectively. Then (SC) holds if and only if

det(I — sA; —tB;) = det(I — sA;)det(I —tB;) for all s,t € C.

By construction, Nul(4;) N Nul(B;) = {0}. By the first part of the proof applied to
A1 and Bl,

(Cn—p = Nul(Al) D Nul(Bl)
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and by (2), the proof is complete. O
The immediate question is whether the necessary condition for (SC) in the above
theorem is sufficient. As the following example shows, this is not the case in general.
EXAMPLE 2.4. Let

000 S5 0 =5
A=|0 0 1 and B=|-1 2 -1
0 01 -5 0 .5

These matrices are diagonalizable with spectra {0,0,1} and {0, 1,2}, respectively, and
C"™ = Nul(A4) ® Nul(B). However, A + B has spectrum {2,1.7071,0.2929} and thus
the pair A, B does not have property L; that is, by Theorem 2.1, they do not satisfy
(SC).

Nevertheless, the condition C" = Nul(A) + Nul(B) is necessary and sufficient for
(SC) under special assumptions.

PROPOSITION 2.5. Let A, B € M, (C) and suppose that ind ¢(A) <1, indo(B) <
1 and that AB = BA. Then (SC) holds if and only if C" = Nul(A) + Nul(B).

Proof. By Theorem 2.3, if (SC) holds, then C" = Nul(A) + Nul(B). For the
converse, suppose C" = Nul(A4) + Nul(B) and let £ # 0, s # 0 and ¢ # 0 such that

(3) (sA+tB)x = Az.

Write x = x1 + 2, where 21 € Nul(A), z2 € Nul(B). Then, as AB = BA, multiplying
(3) by A we obtain

sA%zs = NAzs.

If Azo # 0, we have that \/s € o(A). Otherwise, tBx; = A(z1+x3) or tB%x; = ABx;.
In the latter case, if Bx; # 0, then A/t € o(B); if Bx; = 0, then A = 0. That is, in
all cases every eigenvalue of sA + tB is of the form prescribed in Theorem 2.1 (iii)
and thus (SC) holds. O

PropOSITION 2.6. Let A,B € M,(C) and suppose that indg(A) < 1 and
indo(B) <1 and that BNul(A) C Nul(A). Then the following are equivalent.
(i) Condition (SC) holds.
(ii) C* = Nul(4) + Nul(B).
(iii) AB = 0.

Proof. (i) = (ii) This proof proceeds as the second part of the proof of Proposition
2.5, except for using the assumption that B Nul(A) C Nul(A) instead of commutativ-
ity at the appropriate step.
(ii) = (iii) For every & = x1 + 22 € C", where z; € Nul(A), z» € Nul(B), we have

ABzx = AB(JZl + 1‘2) =ABz1 =0

since Bzx; € Nul(A). Thus AB = 0.
(iii) = (i) This implication holds in general and is a consequence of determinantal
properties. O

The above result provides an instance other than normality of A and B in which
(SC) is equivalent to AB = 0. Moreover, if (SC) holds we can state the following
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condition equivalent to AB = 0. (Recall that it is generally true that AB = 0 if and
only if Im(B) C Nul(A4).)

COROLLARY 2.7. Let A, B € M,(C) satisfy (SC) and assume that indo(A) <1
and indo(B) < 1. Then AB =0 if and only if BNul(A) C Nul(A).

Proof. If AB = 0, then clearly BNul(A) C Nul(A). The converse follows from
the equivalence of (i) and (iii) of Proposition 2.6. O

EXAMPLE 2.8. Let

A= and B =

OO OO
OO N =
OO OO
N ==
OO O

o O O
O =N =

O OO

0 0

These matrices satisfy ind ¢(A4) = ind¢(B) = 1, C" = Nul(4) + Nul(B) and (SC).
However, ANul(B) ¢ Nul(B), BNul(A4) € Nul(A) and AB # BA. That is, the
assumptions implicated in Propositions 2.5 and 2.6 are sufficient but not necessary
for (SC).

The pairing of the eigenvalues and nullspaces of A and B imposed by (SC) suggests
a relation among the eigenspaces of A, B and sA + tB. Indeed, as we see next, any
eigenvectors of B belonging to @ ,c, () (o} Esa+tB(sp) are necessarily null vectors
of B.

THEOREM 2.9. Let A, B € M, (C) satisfy (SC). If for somev € C

@ Esatip(sp) N Nul(B—vI) # {0},
pea(A)\{0}
then v = 0.

Proof. By Theorem 2.1, for every p € o(A) \ {0} and every scalar s, sy €
o(sA +tB). Consider then sA + ¢tB with s # 0 fixed and view

W)= @  Eeasrenlon)
nea(A)\{0}
as a subspace of C" that depends on ¢t. Clearly, W (t) is a non-trivial (sA + ¢tB)-
invariant subspace and thus we may consider the restriction of sA + tB to W (t).

Combining Lemma 2.1.4 and Theorem 1.8.3 in [4], we have that the restriction of
sA +tB to W(t) has spectrum

o((sA+B) [wiw) = {su: p € o(4)\ {0}}.

Suppose thatAfor some ¢ € C, there exists nonzero x € W(#) such that Bx = va.
Then (sA + tB)x € W(t) and thus sAxz € W(t). It follows that sAx + tvx =
(sA+tB)x € W(t) for all t. Let now ¢ — oo in the expression

(§A+B)xe w(#) .

The eigenvalues of ($ A+ B) | ;) are of the form §u, where p € 0(A4) \ {0} and thus
they are converging to zero. On the other hand, (A4 + B)z converges to Br = vz,
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ie., (§4+ B) |y ;) has an eigenvalue arbitrarily close to v for ¢ large enough. This
implies that v = 0, proving the claim that if such an eigenvector = of B exists, it must
be a null vector of B. O

We continue with some illustrative examples.

ExAMPLE 2.10. Let

0 -1 1 -1
A—[O _1] and B_[O 0]

so that

sA+1tB = [é _(S_Jsrt)].

Thus the pair A, B has property L with its eigenvalues being s (—1) +¢0 and s0+¢1.
It follows that (SC) holds. As the conditions of Theorem 2.3 are satisfied, we in fact
have C" = Nul(A4) @ Nul(B). Also AB = 0 and BNul(A) C Nul(A); cf. Proposition
2.6 and Corollary 2.7.

EXAMPLE 2.11. This example is due to Wielandt [10]. Let

01 0 0 0 O
A=1(0 0 -1 and B=1|1 0 O
00 O 010

Then sA +¢B is nilpotent, as are A and B. It follows that the pair A, B has property
L and satisfies (SC) (with the pairing of the eigenvalues being immaterial); however,
AB # 0. This does not contradict our results as ind ¢(4) = ind ¢(B) = 3.

REMARK 2.12. Let A,B € M,(C), s € (0,1/p(A)) and consider Hy = (I —
sA)~!B. Notice that AB = 0 if and only if H, = B. Thus, under the assumption
that (SC) holds, it is not in general true that Hy, = B (see Example 2.8, where
AB # 0). Nevertheless, if (SC) holds, then (i) o(B) = o(H,) and (ii) Im(H) is the
minimal A-invariant subspace over Im(B); see [4, Section 2.8].

Proof. Observe that since s € (0, ﬁ), (I — sA)~! exists and has the series
expansion

(4) (I —sA)~! =isjAj.
=0

We then have
I—sA—tB=(I-sA)(I—-tI—-sA)™'B)
and thus by (SC),
det(I —t(I — sA)™'B) = det(I —tB).
Letting A = 1/t, we obtain
det(A — (I — sA) 'B) = det(\ — B)
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or equivalently, o((I — sA)~!B) = o(B). Also

Im((I —sA)™'B) = Im(i sTAIB),
Jj=0

which coincides with the minimal A-invariant subspace over Im(B). O

REMARK 2.13. We consider a variant of (SC) for the case where 0 is an eigenvalue
of A or B but is not necessarily semisimple. When p > ind¢(4) and ¢ > ind((B),
0 is an eigenvalue of AP and BY of index at most 1. Thus we may consider
(SC) det(I — sAP — tBY) = det(I — sAP) det(I —tB?) for all s,t € C.
From our results (cross-referenced in parentheses) we readily deduce the following
three results.
(i) (SC) = C" = E4(0) + Eg(0) (cf. Theorem 2.3).
(ii) If BE4(0) C E4(0), then (cf. Proposition 2.6)

(SC?) <= C" = E4(0) + Ep(0) < APBY=0.

(iii) If (SC’) holds, then APB? =0 <= B E4(0) C E4(0) (cf. Corollary 2.7).

3. A criterion for (SC). The only necessary and sufficient conditions for (SC)
so far are those of Theorem 2.1, which involve quantifiers for the parameters s and
t. In this section we strive for a parameter-free method to determine whether two
arbitrary matrices A and B satisfy (SC) or not. Since (SC) induces a polynomial
p(s,t) of degree at most 2n, there should exist a finite number of (at most 2(n + 1))
zeros (s,t), whose existence theoretically suffices to imply that p(s,t) is identically
zero. In general, however, such a polynomial has an infinite number of zeros and so
one might have to consider a randomized test to check whether (SC) holds or not.
Alternatively, we can devise a parameter-free test based solely on the matrices A and
B as follows.

First, we relate (SC) to the eigenvalue problem for the matrix polynomial

P\ = X" T _X\"A_ B, A Be M,).
Recall that the spectrum of P()) is defined as the set
a(P(X)) = {\ € C: det(P(X)) = 0}.

We need the following auxiliary result.

LeEMMA 3.1. Consider a polynomial in two variables p(s,t) € C[s,t] of total
degree k, and let m > k be an integer. Then p(s,t) is the zero polynomial in C[s,t] if
and only if p(s,s™+1) = 0 for every s € C.

Proof. Let

k k—a

p(s,t) = Z Z Cayp 8% 1P

a=0 =0
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so that
k k-«
Pls,s™) = 30D cayp s¥ MDA,
=0 8=0

Note that in the expression for p(s,s™*!) above there are no repeated exponents of
s and thus if p(s,s™*!) is identically zero, all coefficients c4 5 = 0; that is, p(s,t) is
also identically zero. The converse is obvious. O

THEOREM 3.2. Let A,B € M, (C). Then the following are equivalent.
(i) Condition (SC) holds.
(ii) det(I — sA — "1 B) = det(I — sA) det(I — s>"*1B) for all s € C.
(ii}) o(K) \ {0} = [0(4) U {u : p2™+! € o(B)}] \ {0}, where

[0, I, O, ... ... 0,]
0, 0, I, O, :
K=|: & " € Manry(©).
S P | 1S
0, 0, 0, ... O, I,
!B 0, 0, ... 0, A]

Proof. (i) <= (ii) This equivalence follows from Lemma 3.1 applied to
p(s,t) =det(I — sA —tB) — det(I — sA) det(I —tB),

which is a polynomial in s,t of total degree k < 2n.
(ii) < (iii) With the transformation s = 1/ we obtain that the condition in (ii) is
equivalent to

det(I — A™'A — A=) B) = det(I — A1 A) det(I — A~ntDB),
which, in turn, is equivalent to
A" det(IN?"H — A" A — B) = det(A] — A) det(A\*"+'] — B).

Since eigenvalues are counted according to their multiplicities, the above equality is
equivalent to

U()\zn+11_ A2n g B)\ {0} = [O'(A) U{p: H2n+1 € O-(B)}] \ {0}.

Notice that the number of the nonzero elements of o(A) U {u : p?>"*1 € o(B)} ranges
between n (when A is nonsingular) and n(2n + 1) (when B is nonsingular).
On the other hand, the eigenvalues of the matrix polynomial A2"*1] — A\?"4 — B
coincide with the spectrum of the block companion matrix K as given above (see [3,
p. 4]), completing the proof of the theorem. O

The above theorem gives us a straightforward way to check whether (SC) holds
or not: Compute the eigenvalues of A, B and of the block companion matrix K, and
check whether Theorem (3.2) (iii) holds or not. Referring to the matrices A and B of
Example 2.8, we compute the nonzero eigenvalues of the corresponding matrix K to
be 2 and the ninth roots of 1. It follows that the pair A, B satisfies (SC) as expected.
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