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ELA

AN UPPER BOUND ON ALGEBRAIC CONNECTIVITY OF
GRAPHS WITH MANY CUTPOINTS∗

S. KIRKLAND†

Abstract. Let G be a graph on n vertices which has k cutpoints. A tight upper bound on the
algebraic connectivity of G in terms of n and k for the case that k > n/2 is provided; the graphs
which yield equality in the bound are also characterized. This completes an investigation initiated
by the author in a previous paper, which dealt with the corresponding problem for the case that
k ≤ n/2.
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1. Introduction and Preliminaries. Let G be a graph on n vertices. Its
Laplacian matrix L can be written as L = D − A, where A is the (0, 1) adjacency
matrix of G, and D is the diagonal matrix of vertex degrees. There is a wealth of
literature on Laplacian matrices in general (see, e.g., the survey by Merris [9]), and
on their eigenvalues in particular. It is straightforward to see that L is a positive
semidefinite singular M-matrix, with the all-ones vector 1 as a null vector. Further,
Fiedler [5] has shown that if G is connected, then the remaining eigenvalues of L are
positive. Motivated by this observation, the second smallest eigenvalue of L is known
as the algebraic connectivity of G; throughout this paper, we denote the algebraic
connectivity of G by α(G). The eigenvectors of L corresponding to α(G) have come
to be known as Fiedler vectors for G.

We list here a few of the well-known properties of algebraic connectivity; these
can be found in [5]. Since α(G) is the second smallest eigenvalue of L, it follows that
α(G) = min{yTLy|yT1 = 0, yT y = 1}. Further, if we add an edge into G to form G̃,
then α(G) ≤ α(G̃). Finally, if G has vertex connectivity c ≤ n− 2, then α(G) ≤ c. In
particular, if G has a cutpoint - that is, a vertex whose deletion (along with all edges
incident with it) yields a disconnected graph - then we see that α(G) ≤ 1.

Motivated by this last observation, Kirkland [7] posed the following problem: if
G is a graph on n vertices which has k cutpoints, find an attainable upper bound on
α(G). In [7], such a bound is constructed for the case that 1 ≤ k ≤ n/2, and the
graphs attaining the bound are characterized. The present paper is a continuation of
the work in [7]; here we give an attainable upper bound on α(G) when n/2 < k ≤ n−2,
and explicitly describe the equality case.

The technique used in this paper relies on the analysis of the various connected
components which arise from the deletion of a cutpoint. We now briefly outline that
technique. Suppose that G is a connected graph and that v is a cutpoint of G. The
components at v are just the connected components of G−v, the (disconnected) graph

∗Received by the editors on 2 November 2000. Accepted for publication on 19 May 2001. Handling
Editor: Chandler Davis.

†Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan, Canada
S4S 0A2. Research supported in part by an NSERC Research Grant (kirkland@math.uregina.ca).

94



ELA
Algebraic connectivity and cutpoints 95

which is produced when we delete v and all edges incident with it. For a connected
component C at v, the bottleneck matrix for C is the inverse of the principal submatrix
of L induced by the vertices of C. It is straightforward to see that the bottleneck
matrix B for C is entrywise positive, and so it has a Perron value, ρ(B), and we
occasionally refer to ρ(B) as the Perron value of C. If the components at v are
C1, · · · , Cm, then we say that Cj is a Perron component at v if its Perron value is
maximum amongst those of the connected components at v. We note that there may
be several Perron components at a vertex.

The following result, which pulls together several facts established in [4] and [1],
shows how the viewpoint of Perron components can be used to describe both α(G)
and the corresponding Fiedler vectors. Throughout this paper, J denotes the all-ones
matrix, O denotes the zero matrix (possibly a vector), and the orders of both J and
O will be apparent from the context. We use ρ(M) to denote the Perron value of any
square entrywise nonnegative matrix M , while λ1(S) denotes the largest eigenvalue
of any symmetric matrix S. We refer the reader to [3] for the basics on nonnegative
matrices, and to [6] for background on symmetric matrices.

Proposition 1.1. Let G be a connected graph having vertex v as a cutpoint. Sup-
pose that the components at v are C1, · · · , Cm, with bottleneck matrices B1, · · · , Bm,
respectively. If Cm is a Perron component at v, then there exists a unique γ ≥ 0 such
that

ρ







B1 O · · · O O
O B2 · · · O O
...

. . .
...

...
O · · · O Bm−1 O
O O · · · O 0


+ γJ


 = λ1(Bm − γJ) = 1

α(G)
.(1.1)

Further, we have γ = 0 if and only if there are two or more Perron components at v.

Finally, y is a Fiedler vector for G if and only if it can be written as
[
y1
y2

]
where

y1 is an eigenvector of




B1 O · · · O O
O B2 · · · O O
...

. . .
...

...
O · · · O Bm−1 O
O O · · · O 0


+ γJ corresponding to ρ, y2 is

an eigenvector of Bm − γJ corresponding to λ1, and where 1T y1 + 1T y2 = 0.
We emphasize that in both of the partitioned matrices appearing in Proposition

1.1, the last diagonal block is 1× 1.
Remark 1.2. Note that if γ > 0 in Proposition 1.1, then necessarily the entries

of y1 either all have the same sign, or they are all 0, while the signs of the entries
in y2 depend on the specifics of Bm and γ. If γ = 0, then the nonzero entries of y1
correspond to entries in Perron vectors of bottleneck matrices of Perron components
at v amongst C1, · · · , Cm−1, while y2 is either a Perron vector for the bottleneck
matrix of the (Perron) component Cm, or is the zero vector.
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Remark 1.3. We observe here that Proposition 1.1 holds even if v is not a
cutpoint. In that case m = 1, so that the matrix whose Perron value we compute on
the left side of (1.1) is the 1× 1 matrix [γ], while Bm is interpreted as the inverse of
the principal submatrix of the Laplacian induced by the vertices of G− v.

The next result follows readily from Proposition 1.1; the proof is a variation on
that of Theorems 2.4 and 2.5 of [4].

Corollary 1.4. Let G be a connected graph with a cutpoint v, and suppose that
there are just two components at v. Let B be the bottleneck matrix of a component C
at v which is not the unique Perron component at v. Form a new graph G̃ by replacing
the component C at v by another component C̃ such that the corresponding bottleneck

matrix satisfies ρ
([

B O
O 0

]
+ γJ

)
> ρ

([
B̃ O
O 0

]
+ γJ

)
for all γ ≥ 0. Then

α(G) < α(G̃).
The following result can also be deduced from Proposition 1.1.
Corollary 1.5. Let G be a connected graph with a cutpoint v, and suppose that

C is a connected component at v. Let G−C be the graph obtained from G by deleting
both C and each edge between v and any vertex of C. Then α(G) ≤ α(G − C).

The following result will be useful in the sequel, and is a recasting of Lemma 6 of
[2].

Proposition 1.6. Let G be a connected graph with a cutpoint v. Suppose that
we have two components C1, C2 at v with corresponding Perron values ρ1 and ρ2,
respectively. If ρ1 ≤ ρ2, then α(G) ≤ 1/ρ1. Further, if α(G) = 1/ρ1, then ρ1 = ρ2
and both C1 and C2 are Perron components at v.

We close the section with a result from [4] which helps describe the structure of a
bottleneck matrix when the component under consideration contains some cutpoints.

Lemma 1.7. Suppose that we have a component C at a vertex v; suppose further
that C has p vertices, and let M = [Mi,j ]1≤i,j≤p be the bottleneck matrix for C.
Construct a new component at v as follows: fix some integer 1 ≤ k ≤ p and select
vertices i = 1, · · · , k of C; for each 1 ≤ i ≤ k, add a component with bottleneck matrix
Bi at vertex i. Then the resulting component at v has bottleneck matrix given by



B1 +M1,1J M1,2J · · · M1,kJ 1eT1M

M2,1J B2 +M2,2J · · · M2,kJ 1eT2M
...

. . .
...

...
Mk,1J · · · Mk,k−1J Bk +Mk,kJ 1eTkM

Me11T Me21T · · · Mek1T M



.

2. Main Results. In order to construct our bound on algebraic connectivity,
we first investigate some special classes of graphs; it will transpire that in fact these
graphs are the extremizing ones for the problem at hand. In describing these graphs
we will say that a graph G2 is formed from a graph G1 by attaching a path on q
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vertices at vertex v if G2 differs from G1 only in the existence of a new connected
component at v: a path on q vertices, where v is adjacent to just one vertex in that
component, namely to an end point of that path. We will refer to such a component
as a path attached at v. We remark that the bottleneck matrix for a path on q vertices
attached at a vertex v has the form

Pq ≡




q q − 1 q − 2 · · · 2 1
q − 1 q − 1 q − 2 · · · 2 1
...

...
. . .

...
...

2 2 · · · 2 1
1 1 · · · 1 1


 .

Given q,m ∈ N with m ≥ 2, we form the following classes of graphs:
i) E0(q,m) is the graph formed by attaching a path on q vertices to each vertex of
the complete graph on m vertices. (By an abuse of terminology, we will sometimes
refer to E0(q,m) as a class of graphs.)
ii) E1(q,m) denotes the class of graphs formed as follows: start with a graph H on
m + 1 vertices having a special cutpoint labeled v0 which is adjacent to all other
vertices of H , then attach a path on q vertices at each vertex of H − v0.
iii) For each m ≥ l ≥ 2, El(q,m) denotes the class of graphs formed as follows: start
with a graph H on m vertices which has at least r vertices of degree m− 1 for some
m ≥ r ≥ l; select r such vertices of degree m− 1, and at each, attach a path on q+1
vertices; at each remaining vertex i (where 1 ≤ i ≤ m − r) of H , attach a path on
ji ≤ q vertices (possibly ji = 0), subject to the condition that r +

m−r∑
i=1

(ji − q) = l.
Remark 2.1. Comparing constructions i) and iii), we see that in fact Em(q,m) =

E0(q + 1,m); occasionally this fact will be notationally convenient in the sequel.
For each l with 0 ≤ l ≤ m, consider a graph G ∈ El(q,m), and denote the size of

its vertex set by n. We find from constructions i), ii) and iii) above that necessarily
the number of cutpoints in G is k = (qn+ l)/(q + 1).

Next, given q,m ∈ N with m ≥ 2, we define the following quantities, which will
turn out to furnish our extremal values for algebraic connectivity:

α0,q,m = 1/ρ
([

Pq O
O 0

]
+
1
m
J

)
;

α1,q,m = 1/ρ (Pq+1) ;

and for each 2 ≤ l ≤ m,

αl,q,m = 1/ρ
([

Pq+1 O
O 0

]
+
1
m
J

)
.

Remark 2.2. Observe that α0,q,m > α1,q,m > α2,q,m = αl,q,m for l ≥ 3, that
αl,q,m is strictly decreasing in q, and that αl,q,m is strictly increasing in m for l �= 1.
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The following result computes the algebraic connectivity for the graphs inEl(q,m)
for each l ≥ 0.

Proposition 2.3. i) α(E0(q,m)) = α0,q,m. Further, if any edge is deleted from
E0(q,m), then the resulting graph has algebraic connectivity strictly less than α0,q,m.

ii) For any graph G ∈ E1(q,m), we have α(G) = α1,q,m. Further if any edge
incident with the special cutpoint v0 is deleted from G, then the resulting graph has
algebraic connectivity strictly less than α1,q,m.

iii) If l ≥ 2, then for any graph G ∈ El(q,m), we have α(G) = αl,q,m. Further
if any edge incident with a vertex of degree m is deleted from G, then the resulting
graph has algebraic connectivity strictly less than αl,q,m.

Proof. i) Let u be a vertex of E0(q,m) which has degree m. Then the non-Perron
component at u is the path on q vertices, which has bottleneck matrix Pq. Further,
it follows from Lemma 1.7 that the bottleneck matrix for the Perron component at u
is given by

B =




Pq + 2
mJ

1
mJ · · · 1

mJ
1
m1eT1 (I + J)

1
mJ Pq + 2

mJ · · · 1
mJ

1
m1eT2 (I + J)

...
...

. . .
...

...
1
mJ

1
mJ · · · Pq + 2

mJ
1
m1eTm−1(I + J)

1
m (I + J)e11

T 1
m (I + J)e21

T · · · 1
m (I + J)em−11T 1

m (I + J)



.

We find that B − 1
m
J is permutationally similar to a direct sum of m − 1 copies of[

Pq O
O 0

]
+
1
m
J . It now follows from Proposition 1.1 that α(E0(q,m)) = α0,q,m.

Let w be another vertex of E0(q,m) of degreem. From Proposition 1.1 we see that
the following construction yields a Fiedler vector y of E0(q,m). Let z be a positive

Perron vector of
[
Pq O
O 0

]
+
1
m
J . Now let the subvector of y corresponding to the

vertices in the Perron component at u, along with u itself, be given by z, let the
subvector of y corresponding to the direct summand of B− 1

mJ which includes vertex
w be given by −z, and let the remaining entries of y be 0. Note in particular that
yu > 0 > yw. Thus if L is the Laplacian matrix of the graph formed from E0(q,m)
by deleting the edge between u and w, we find that yTLy = α0,q,my

T y− (yu−yw)2 <
α0,q,my

T y, so that the algebraic connectivity of that graph is less than α0,q,m.
ii) Consider the graph D1 formed by attaching m paths on q + 1 vertices to the

single vertex v0. Evidently D1 ∈ E1(q,m), and it is readily seen from Proposition 1.1
that α(D1) = α1,q,m. Further, since any G ∈ E1(q,m) can be formed by adding
edges to D1, we see that α(G) ≥ α1,q,m. Next, let C be a connected component at
v0 in G. We claim that the Perron value of C is at least ρ(Pq+1); once the claim
is established, an application of Proposition 1.6 will then yield that α(G) = α1,q,m.
Since adding edges into C can only decrease its Perron value (see, e.g., [8]), we need
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only establish the claim for the case that the vertices in C adjacent to v0 induce a
complete subgraph, say on a− 1 vertices. In that case, we find from Lemma 1.7 that
the bottleneck matrix for C has the form

B =




Pq + 2
aJ

1
aJ · · · 1

aJ
1
a1eT1 (I + J)

1
aJ Pq + 2

aJ · · · 1
aJ

1
a1eT2 (I + J)

...
...

. . .
...

...
1
aJ

1
aJ · · · Pq + 2

aJ
1
a1eTa (I + J)

1
a (I + J)e11

T 1
a (I + J)e21

T · · · 1
a (I + J)ea1

T 1
a (I + J)



.

Next we observe that B is permutationally similar to


qI + 1
a (I + J) (q − 1)I + 1

a (I + J) · · · I + 1
a (I + J)

1
a (I + J)

(q − 1)I + 1
a (I + J) (q − 1)I + 1

a (I + J) · · · I + 1
a (I + J)

1
a (I + J)

...
...

. . .
...

...
1
a (I + J)

1
a (I + J) · · · 1

a (I + J)
1
a (I + J)


 ,

where each block is (a− 1)× (a− 1). Since the rows in each block of this last matrix
sum to the corresponding entry of Pq+1, it follows readily that the Perron value of C
is ρ(Pq+1). We thus conclude that α(G) = α1,q,m.

Let w be a vertex of G which is adjacent to v0. From Proposition 1.1 we see that
the following construction yields a Fiedler vector y for G. Let z1 be a positive Perron
vector for the bottleneck matrix of the (Perron) component at v0 containing w, and
let z2 be a negative Perron vector for the bottleneck matrix of some other (Perron)
component at v0, normalized so that 1T z1 + 1T z2 = 0. Now let the subvectors of
y corresponding to those components at v0 be z1 and z2, respectively, and let the
remaining entries of y be 0. Note in particular that yw > 0 = yv0 . Thus if L is the
Laplacian matrix of the graph formed from G by deleting the edge between v0 and
w, we find that yTLy < α1,q,my

T y, so that the algebraic connectivity of that graph
is less than α1,q,m.

iii) Suppose that l ≥ 2, and that G ∈ El,q,m; then G can be constructed by
starting with a graph H on m vertices in which vertices 1, · · · , r have degree m − 1
(where m ≥ r ≥ l), attaching paths of length q+ 1 to vertices 1, · · · , r, and attaching
paths of length 0 ≤ ji ≤ q to vertex i, for each i = r + 1, · · · ,m. Let H1 be the
complete graph on m vertices and construct G1 ∈ El,q,m from H1 via a procedure
parallel to the construction of G. Let H2 be the graph on m vertices in which vertices
1, · · · , r have degree m − 1 and vertices r + 1, · · · ,m have degree r; now construct
G2 ∈ El,q,m from H2 via a procedure parallel to the construction of G. Observe that
G can be formed by adding edges to G2, or by deleting edges from G1; we thus find
that α(G1) ≥ α(G) ≥ α(G2).

Let u be a vertex of G1 of degree m. Then the non-Perron component at u is the
path on q + 1 vertices, which has bottleneck matrix Pq+1. Further, it follows from
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Lemma 1.7 that the bottleneck matrix B1 for the Perron component at u has the
form 


A1

1
mJ U1

1
mJ A2 U2

U3
1
m (I + J)


 ,

where

A1 =




Pq+1 + 2
mJ

1
mJ . . . 1

mJ

1
mJ

. . .
...

... 1
mJ

1
mJ · · · 1

mJ Pq+1 + 2
mJ



, U1 =




1
m1eT1 (I + J)

...

...

1
m1eTr−1(I + J)



,

A2 =




Pj1 +
2
mJ

1
mJ . . . 1

mJ

1
mJ

. . .
...

... 1
mJ

1
mJ · · · 1

mJ Pjm−r +
2
mJ



, U2 =




1
m1eTr (I + J)

...

...

1
m1eTm−1(I + J)




and

U3 =
[

1
m(I + J)e11

T · · · 1
m (I + J)em−11T

]
.

Note that B1 − 1
m
J is permutationally similar to a direct sum of r − 1 copies of[

Pq+1 O
O 0

]
+
1
m
J , along with the matrices

[
Pji O
O 0

]
+
1
m
J , 1 ≤ i ≤ m− r.

It now follows from Proposition 1.1 that α(G1) = αl,q,m. From Proposition 1.1 we
also see that the following construction yields a Fiedler vector y for G1. Let z1 be

a positive Perron vector for
[
Pq+1 O
O 0

]
+
1
m
J , and let z2 be a λ1-eigenvector of

B1 − 1
m
J with all nonpositive entries, normalized so that 1T z1+1T z2 = 0. (Observe

that such a z2 exists, since B1 − 1
m
J is a direct sum of positive matrices.) Now let

the subvector of y corresponding to the vertices in the Perron component at u, along
with u itself, be z2, and let the remaining subvector of y be z1. In particular, for each
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vertex w in the Perron component at u in G1, yu > 0 ≥ yw; it now follows as above
that if we delete an edge from G which is incident with u, the resulting graph has
algebraic connectivity strictly less than αl,q,m.

Next we consider the graph G2, and again let u be a vertex of G2 of degree
m. As above, the non-Perron component at u is a path on q + 1 vertices. Let

M =
[

1
m(Ir−1 + J) 1

mJ
1
mJ

1
r Im−r + r−1

mr J

]
. We find from Lemma 1.7 that the bottleneck

matrix B2 for the Perron component at u can be written as

B2 =



N1 N3 V1

NT
3 N2 V2

V3 M


 ,

where

N1 =




Pq+1 +M1,1J M1,2J . . . M1,r−1J

M2,1J
. . .

...
... Mr−2,r−1J

Mr−1,1J · · · Mr−1,r−2J Pq+1 +Mr−1,r−1J



,

N2 =




Pj1 +Mr,rJ Mr,r+1J . . . Mr,m−1J

Mr+1,rJ
. . .

...

... Mm−2,m−1J

Mm−1,r · · · Mm−1,m−2J Pjm−r +Mm−1,m−1J



,

N3 =




M1,rJ . . . M1,m−1J
...

...
Mr−1,rJ . . . Mr−1,m−1J




and

V1 =




1eT1M

...

...

1eTr−1M



, V2 =




1eTr M

...

...

1eTm−1M



, V3 =

[
Me11T · · · Mem−11T

]
,
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with Mi,j denoting the entry of M in row i and column j. Consequently, B2 − 1
m
J is

permutationally similar to a direct sum of r− 1 copies of
[
Pq+1 O
O 0

]
+
1
m
J , along

with the matrix

R =




Pj1 +
1
r I O · · · O 1

r1eT1
...

. . .
...

...
... O

...
O · · · O Pjm−r +

1
r I

1
r1eTm−r

1
r e11

T · · · · · · 1
r em−r1T 1

r I



− 1
mr
J.

Now R+
1
mr
J is permutationally similar to a direct sum of the matrices[

Pji O
O 0

]
+

1
r
J for 1 ≤ i ≤ m− r, so we see that

λ1(R) ≤ λ1

(
R+

1
mr
J

)
< ρ

([
Pq+1 O
O 0

]
+
1
m
J

)
.

In particular, we have

λ1

(
B2 − 1

m
J

)
= ρ

([
Pq+1 O
O 0

]
+
1
m
J

)

and so considering the bottleneck matrices for the components at u, an application of
Proposition 1.1 (with γ = 1/m) shows that α(G2) = αl,q,m. The result now follows
from the fact that α(G1) ≥ α(G) ≥ α(G2).

Remark 2.4. Observe that from the proof of Proposition 2.3, we find that in
case ii), each graph in E1(q,m) has the property that at the special cutpoint v0, every
component is a Perron component, with Perron value equal to ρ(Pq+1).

The following lemma deals with a special case which arises in the proof of our
main result.

Lemma 2.5. Let G be a connected graph on n vertices having k > n/2 cutpoints,
such that k = (qn+ l)/(q+1) for some q ≥ 1 and l ≥ 0. Suppose that at each cutpoint
u of G there are exactly two components, that one of those components, say C, is
not the unique Perron component at u, and that C is a path attached at u. Then
α(G) ≤ αl,q,n−k, and equality holds if and only if G ∈ El(q, n− k).

Proof. It is straightforward to show by induction on n that since at each cutpoint
there are two components, one of which is an attached path, the graph G can be
constructed as follows: begin with a graph H on n−k vertices which has no cutpoints,
and for some 1 ≤ m ≤ n − k, select m vertices of H , say vertices 1, · · · ,m; for each
1 ≤ i ≤ m, attach a path of length ji at vertex i. In order to facilitate notation in the
sequel, we will let ji = 0 for i = m+1, · · · , n−k in the case thatm < n−k. The graph
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thus constructed has k =
m∑

i=1

ji =
n−k∑
i=1

ji cutpoints and n−k+
n−k∑
i=1

ji =
n−k∑
i=1

(ji + 1) = n

vertices. From the hypothesis we may also assume without loss of generality that for
each 1 ≤ i ≤ n − k, the path on ji vertices attached at vertex i is not the unique
Perron component at vertex i.

If m = 1 then j1 = k and since n − 2 ≥ k = (qn + l)/(q + 1), we find that
n ≥ 2q + l + 2. Since n ≥ 2q + l + 2, we find that (qn + l)/(q + 1) ≥ 2q + l; further
it is clear that if q ≥ 2 then 2q + l ≥ q + 2, while if q = 1 then necessarily l ≥ 1,
since our hypothesis asserts that n/2 < k = (qn + l)/(q + 1), and again we see that
2q+ l ≥ q+2. Thus we have k = (qn+ l)/(q+1) ≥ 2q+ l ≥ q+2. In particular, since
the path on k vertices attached at vertex 1 is not the unique Perron component, we
have α(G) ≤ 1/ρ(Pk) ≤ 1/ρ(Pq+2) < αl,q,n−k.

Henceforth we assume that m ≥ 2. Note that as above, if some ji ≥ q + 2, then
α(G) < αl,q,n−k. So henceforth we also suppose that ji ≤ q + 1, i = 1, · · · ,m. If each
ji is at most q, then note that mq ≥

m∑
i=1

ji = k, while n =
m∑

i=1

ji + n − k. Since

(q + 1)k = qn + l, it follows that mq ≥
m∑

i=1

ji = q(n − k) + l ≥ mq + l. We deduce
that l = 0, that m = n− k and that each ji = q. Observe now that by adding edges
(if necessary) into G, we can construct E0(q, n−k). The conclusion now follows from
Proposition 2.3.

Next we assume that at least one ji is equal to q + 1. If there are r ≥ 2 such

ji’s, j1, · · · , jr say, then note that l = (q + 1)k − qn = (q + 1)
n−k∑
i=1

ji − q
n−k∑
i=1

(ji + 1) =

r +
n−k∑

i=r+1

(ji − q). Thus, by adding edges into G (if necessary) we can construct a

graph in El(q, n− k). The conclusion then follows from Proposition 2.3.
Finally, suppose that just one ji is equal to q + 1, say j1 = q + 1. If some ji is at

most q−1, then we see that (q+1)+(q−1)+(m−2)q ≥
m∑

i=1

ji = q(n−k)+l ≥ qm+l.
Thus l = 0, but then we have α(G) ≤ 1/ρ(Pq+1) < α0,q,n−k. On the other hand, if
each ji = q for each 2 ≤ i ≤ m, then we have mq + 1 = q(n − k) + l. Note that if
n− k > m, then q + l ≤ 1, contradicting the fact that k > n/2. Thus it must be the
case that n− k = m, so that l = 1. Observing that by adding edges to G if necessary,
we can construct a graph in E1(q, n−k), the conclusion then follows from Proposition
2.3.

We are now ready to present the main result of this paper.
Theorem 2.6. Let G be a connected graph on n vertices which has k cutpoints.

Suppose that k > n/2, say with k = (qn + l)/(q + 1) for some positive integer q and
nonnegative integer l. Then α(G) ≤ αl,q,n−k. Furthermore, equality holds if and only
G ∈ El(q, n− k).

Proof. We proceed by induction on n, and since the proof is somewhat lengthy,
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we first give a brief outline of our approach. After establishing the base case for
the induction, we then assume the induction hypothesis, and deal with the case that
at some cutpoint of G, there is a component on at least two vertices containing no
cutpoints of G. Next, we cover the case that l ≥ 3. We follow that by a discussion
of the case that 0 ≤ l ≤ 2 and that at some cutpoint of G there are at least three
components. We then suppose that 0 ≤ l ≤ 2, and that at each cutpoint v of G there
are exactly two components (note that one of those components is not the unique
Perron component at v). We deal with the case that for some cutpoint v of G there
is a component which is not the unique Perron component at v, and which is not an
attached path. The last remaining case is then covered by Lemma 2.5.

As noted above, we will use induction on n. Note that since (n+1)/2 ≤ k ≤ n−2
we see that the smallest admissible case is n = 5. This yields k = 3, so we have q = 1
and l = 1. In that instance, G is the path on 5 vertices, so that α(G) = 1/ρ(P2) =
α1,1,2 = αl,q,n−k; note also that G ∈ E1(1, 2) = El(q, n− k) in this case.

Now we suppose that n ≥ 6 and that the result holds for all graphs on at most
n−1 vertices. Let v be a cutpoint ofG at which there is a component C which contains
no cutpoints of G and suppose that C has n1 ≥ 2 vertices. We claim that in this
case, α(G) < αl,q,n−k. To see the claim, note that the graph G−C has at least k− 1
cutpoints and exactly n−n1 vertices; since k−1 = (q(n−n1)+l−1+q(n1−1))/(q+1),
we find from Corollary 1.5 and the induction hypothesis that α(G) ≤ α(G − C) ≤
αl−1+q(n1−1),q,n−n1−k+1. Since q(n1 − 1) ≥ 1 and n1 ≥ 2, we find from Remark 2.2
that αl−1+q(n1−1),q,n−n1−k+1 ≤ αl,q,n−k, with strict inequality if either q(n1 − 1) > 1
or l �= 1. Thus it remains only to establish the claim when q(n1 − 1) = 1 and
l = 1 - i.e. when n1 = 2, l = 1 and q = 1. From the induction hypothesis, either
α(G − C) < α1,1,n−k−1, in which case we are done, or G− C ∈ E1(1, n− k − 1). In
that case, note that at the special cutpoint v0 of G−C, there are at least two Perron
components, each of Perron value ρ(P2). Note also that in G, v cannot be the same
as v0, otherwise G has fewer than (qn+ l)/(q+1) = (n+1)/2 cutpoints. Thus we see
that in G, there is at least one component at v0 with Perron value ρ(P2), and another
with Perron value larger than ρ(P2). The claim now follows from Proposition 1.6.

Henceforth we will assume that any component at a cutpoint v which does not
contain a cutpoint of G must necessarily consist of a single vertex. Suppose now that
l ≥ 3; select a cutpoint v of G at which one of the components is a single (pendant)
vertex, and form G̃ by deleting that pendant vertex. Since G̃ has at least k − 1
cutpoints and n − 1 vertices, we find as above that α(G) ≤ α(G̃) ≤ αl−1,q,n−k =
αl,q,n−k (the last since l ≥ 3), yielding the desired inequality on α(G). Further, if
α(G) = αl,q,n−k then necessarily G̃ has exactly k − 1 cutpoints (otherwise α(G̃) ≤
αl−1,q,n−k−1 < αl,q,n−k, the last inequality from Remark 2.2), and α(G̃) = αl−1,q,n−k.
Thus by the induction hypothesis, G̃ ∈ El−1(q, n − k). Further, G is formed from
G̃ by adding a pendant vertex p at one of the pendant vertices of G̃. Consider the
construction of G̃ described in iii): if p is added at the end of a path on ji ≤ q
vertices, then G ∈ El(q, n − k), and we are done; if p is added at the end of a path
on q + 1 vertices, then in G there is a vertex u (the root of that path) at which
there are two components: one with Perron value ρ(Pq+2) and the other with Perron
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value at least ρ
([

Pq+1 O
O 0

]
+

1
n− kJ

)
. It now follows from Proposition 1.6 that

α(G) < αl,q,n−k, contrary to our assumption. We have thus established the result for
l ≥ 3.

Henceforth we assume that 0 ≤ l ≤ 2. Suppose that at a cutpoint v of G there are
m ≥ 3 components, say C1, · · · , Cm, where Ci contains ni vertices and ki cutpoints
of G, 1 ≤ i ≤ m. For each such i, we see that G− Ci has n− ni vertices and k − ki

cutpoints. Suppose that for each 1 ≤ i ≤ m we have k−ki ≤ (q(n−ni)+l−1)/(q+1).
Summing these inequalities, we find thatmk−k+1 ≤ (q(mn−n+1)+m(l−1))/(q+1),
so that (m−1)k ≤ (q(m−1)n+ml−m−1)/(q+1)≤ (m−1)(qn+l−1)/(q+1), the last
inequality following from the fact that l ≤ 2. Thus k < (qn+l)/(q+1), contrary to our
hypothesis. We conclude that for some i we must have k−ki ≥ (q(n−ni)+ l)/(q+1).
But then we have α(G) ≤ α(G − Ci) ≤ αl,q,n−ni−k+ki ≤ αl,q,n−k, with the last
inequality being strict in the case that l = 0 or 2 (by Remark 2.2). We thus find that
α(G) ≤ αl,q,n−k. Suppose now that α(G) = αl,q,n−k. Then as remarked above, we
must have l = 1; further, we necessarily have k − ki = (q(n − ni) + l)/(q + 1) and
G−Ci ∈ E1(q, n−k−ni+ki) by the induction hypothesis. Let v0 denote the special
cutpoint of G− Ci, at which each component is a Perron component, having Perron
value ρ(Pq+1). If v �= v0, then we find that in G, the cutpoint v0 has one component
with Perron value greater than ρ(Pq+1) and at least one component with Perron value
equal to ρ(Pq+1); from Proposition 1.6, we conclude that α(G) < α1,q,n−k, contrary
to our assumption. Thus necessarily v = v0 and so the graph G − Ci is constructed
as described in ii). In particular, for each j �= i, Cj satisfies kj = qnj/(q + 1), and
so the analysis above also applies to the graph G − Cj . Consequently, G − Cj ∈
El(q, n− k − nj + kj), from which it follows that G ∈ E1(q, n− k), as desired.

Henceforth we assume that at each cutpoint of G, there are just two components.
Let u be a cutpoint of G, and suppose that there is a component C at u which
is not the unique Perron component at u, and which is not a path attached at u.
Consider the subgraph induced by the vertices of C ∪ u and let w be a cutpoint of G
in that subgraph which is farthest from u (possibly w = u) such that at w, there is
a component Ĉ which is not the unique Perron component at w in G, and which is
not a path attached at w. Observe that Ĉ contains at least one cutpoint of G (since
we are dealing with the case that a component without any cutpoints is a path on
one vertex). Further, at each cutpoint in Ĉ, the component not containing w is an
attached path, otherwise there is a cutpoint t farther from u than w, such that at t,
there is a component Ĉ which is not the unique Perron component at t, and which
is not a path attached at t, contrary to the fact that w is a cutpoint farthest from u
with that property.

We claim that if this is the case, then either α(G) < αl,q,n−k or l = 1 and
G ∈ E1(q, n−k). Since adding edges into G cannot decrease its algebraic connectivity,
it is enough to prove the claim in the case that Ĉ is constructed by taking a complete
graph on vertices 1, · · · ,m+x, attaching a path of length ji ≥ 1 at vertex i, 1 ≤ i ≤ m
(we admit the possibility that x may be 0), and ensuring that w is adjacent to each
of vertices 1, · · · ,m+ x. Observe that necessarily, m + x ≥ 2, otherwise Ĉ would be
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a path attached at w. If some ji ≥ q + 1, it follows readily that

α(G) ≤ 1/ρ
([

Pq+1 O
O 0

]
+

1
m+ x

J

)
< αl,q,n−k,

where the last inequality holds since m + x < n − k. So we suppose that ji ≤ q
for 1 ≤ i ≤ m. Next, form G′ from G by replacing the component Ĉ at w by a
path on j1 vertices attached at w. Since the bottleneck matrix B̂ for Ĉ satisfies

ρ

([
B̂ O
O 0

]
+ γJ

)
> ρ

([
Pj1 O
O 0

]
+ γJ

)
for any nonnegative γ (the strict in-

equality following from the fact that the order of B̂ is strictly greater than j1) , we

find from Corollary 1.4 that α(G) < α(G′). Note that G′ has k− 1−
m∑

i=2

ji cutpoints

and n−m− x−
m∑

i=2

ji vertices. Further,

k − 1−
m∑

i=2

ji =

(
q(n−m− x−

m∑
i=2

ji) +
m∑

i=2

(q − ji) + qx− 1 + l
)
/(q + 1).

In particular, if x ≥ 1, then by the induction hypothesis and Remark 2.2, α(G) <
α(G′) ≤ αl,q,n−k−m−x+1, yielding the desired inequality. If x = 0, then necessarily
m ≥ 2 (otherwise Ĉ is a path) and so if ji < q for some 2 ≤ i ≤ m, we again find that
α(G) < αl,q,n−k. An analogous argument applies if x = 0 and j1 < q, so it remains
only to consider the case that x = 0 and ji = q for 1 ≤ i ≤ m.

In that case, the bottleneck matrix B̂ for Ĉ can be written as


qI + 1
m+1

(I + J) (q − 1)I + 1
m+1

(I + J) · · · I + 1
m+1

(I + J) 1
m+1

(I + J)

(q − 1)I + 1
m+1

(I + J) (q − 1)I + 1
m+1

(I + J) · · · I + 1
m+1

(I + J) 1
m+1

(I + J)
...

...
. . .

...
...

1
m+1

(I + J) 1
m+1

(I + J) · · · 1
m+1

(I + J) 1
m+1

(I + J)


 ,

where each block is m×m. Further, each block of B̂ has constant row sums which are
equal to the corresponding entry in Pq+1, and it then follows that ρ(B̂) = ρ(Pq+1),
while for each positive γ,

ρ

([
B̂ O
O 0

]
+ γJ

)
= ρ

([
Pq+1 O
O 0

]
+mγJ

)
> ρ

([
Pq+1 O
O 0

]
+ γJ

)
.

If there are two Perron components at w in G, then an analogous argument on the
other Perron component at w (i.e., the component not equal to Ĉ) reveals that either
α(G) < αl,q,n−k or that l = 1 and G ∈ E1(q, n− k). On the other hand, if there is a
unique Perron component at w in G, form G′′ from G by replacing Ĉ by a path on
q + 1 vertices; it follows from Proposition 1.1 that α(G) < α(G′′). Observe that G′′
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has k − (m− 1)q cutpoints and n− (m− 1)(q + 1) vertices. Since

k − (m− 1)q = q(n− (m− 1)(q + 1)) + l
q + 1

,

we find from the induction hypothesis that α(G′′) ≤ αl,q,n−k−m+1, thus completing
the proof of the claim.

From the forgoing, we now need only consider the case that at each cutpoint of
G there are just two components, and that for any cutpoint u, there is a component
which is not the unique Perron component at u, and which is a path attached at u.
The conclusion now follows from Lemma 2.5.

Remark 2.7. The hypothesis of Theorem 2.6 is stated for any integers q and
l such that q ≥ 1, l ≥ 0 and k = (qn + l)/(q + 1), but it is straightforward to see
that the resulting bound on α(G) is tightest when q is as large as possible and that
equality is attainable only in that case. Observe that if l ≥ n− k, say l = n− k + i,
then we find that k = ((q + 1)n+ i)/(q+ 2), so the case that q is as large as possible
is equivalent to the case that l < n − k. That case is easily seen to correspond to
q = 
k/(n− k)� and l = k− (n− k)
k/(n− k)�. Thus we see that if G has n vertices
and k > n/2 cutpoints, then α(G) ≤ αk−(n−k)�k/(n−k)�,�k/(n−k)�,n−k , with equality if
and only if G ∈ Ek−(n−k)�k/(n−k)�(
k/(n− k)�, n− k).

While Theorem 2.6 gives us the upper bound αl,q,n−k in terms of Perron values,
the following result makes the value of αl,q,n−k a little more explicit.

Proposition 2.8. Suppose that q ∈ N , and that m ≥ 1. Then there exists a
unique θ0 ∈

[
π

2q+3 ,
π

2q+1

]
such that (m−1) cos ((2q + 1)θ0/2)+cos ((2q + 3)θ0/2) = 0.

Furthermore,

1/ρ
([

Pq O
O 0

]
+
1
m
J

)
= 2(1− cos(θ0)).

Proof. It is straightforward to see that the function (m− 1) cos ((2q + 1)θ0/2) +
cos ((2q + 3)θ0/2) is decreasing from (m − 1) cos ((2q + 1)π/(2(2q + 3))) ≥ 0 to
cos((2q+ 3)π)/(2(2q+ 1))) < 0 for θ ∈

[
π

2q+3 ,
π

2q+1

]
, so the existence and uniqueness

of θ0 follows readily.
Further, we have

([
Pq O
O 0

]
+
1
m
J

)−1

=M ≡




1 −1 0 · · · 0 0
−1 2 −1 0 · · · 0
...

. . .
...

0 0 · · · −1 2 −1
0 0 · · · 0 −1 m+ 1


 ,

so that 1/ρ
([

Pq O
O 0

]
+
1
m
J

)
is the smallest eigenvalue of M . Observe that M is

an M-matrix. Further, since

cos((i− 1)θ0 + θ0/2) + cos((i+ 1)θ0 + θ0/2) = 2 cos(iθ0 + θ0/2) cos(θ0)
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for each i = 0, · · · , q, we find that the vector v =




cos(θ0/2)
cos(3θ0/2)

...
cos((2q + 1)θ0/2)


 is an eigen-

vector of M corresponding to the eigenvalue 2(1− cos(θ0)). Since v is an eigenvector
with all positive entries, it corresponds to the smallest eigenvalue ofM , and the result
now follows.

Corollary 2.9. For each q ∈ N , α1,q,n−k = 2(1− cos( π
2q+3 )).

Proof. Since 1/ρ(Pq+1) corresponds to the case m = 1 in Proposition 2.8, the
conclusion follows.

Remark 2.10. The principal results of [7] assert that for a graph G on n vertices
with k cutpoints, we have: i) if k = 1, then α(G) ≤ 1, with equality if and only if
the single cutpoint v0 is adjacent to all other vertices of G; ii) if 2 ≤ k ≤ n/2,
then α(G) ≤ 2(n− k)/(n− k + 2 +√(n− k)2 + 4), with equality if and only if G is
constructed by taking a graph on n−k vertices which has k vertices of degree n−k−1,
and attaching a pendant vertex at each of those vertices of maximum degree.

In the language of the present paper, case i) corresponds to q = 0 and l = 1, and
yields the upper bound α(G) ≤ 1/ρ(P1); equality holds if and only if G is formed
from a construction analogous to that of the graphs in E1(q, n − k). Similarly, for
k < n/2, case ii) corresponds to q = 0 and l = k. A straightforward computation

with the 2× 2 matrix
[
P1 0
0 0

]
+

1
n− kJ shows that

2(n− k)/(n− k + 2 +
√
(n− k)2 + 4) = 1/ρ

([
P1 0
0 0

]
+

1
n− kJ

)
,

so the upper bound can be written as

α(G) ≤ 1/ρ
([

P1 0
0 0

]
+

1
n− kJ

)
.

Further, equality holds if and only if G is formed from a construction analogous to
that of the graphs in El(q, n−k). If k = n/2, then case ii) corresponds to q = 1, l = 0,
and again

α(G) ≤ 1/ρ
([

P1 0
0 0

]
+

1
n− kJ

)
,

with equality holding if and only if G can be constructed in a manner analogous to
that in El(q, n − k). Thus we see that both the upper bounds and the extremizing
graphs in the present paper are natural extensions of the corresponding ones in [7].
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