#Theorem39iii.maple # # Frank Sottile # October 31998 # Berkeley, California # # This MAPLE script establishes Theorem 3.9.iii of "Real Schubert Calculus: # Polynomial systems and a conjecture of Shapiro and Shapiro". This is the # case of Shapiro's conjecture concerning the 6 3-planes in C^6 which # satisfy 2 Schubert conditions of type 135, and 3 hypersurface # Schubert conditions (J_1). # #interface(quiet=true): with(linalg): with(Groebner): read ELEMENTARIZE: # # We work in local coordinates X_135,135 for the set of 3-planes satisfying # two Schubert conditiopns of type 135. The Polynomial Poly(s) determines # those planes that also meet the 3-plane osculating the rational normal curve # at the point s. # Poly := s -> det(matrix([ [1, s ,s^2, s^3 , s^4 , s^5 ], [0, 1 ,2*s,3*s^2,4*s^3, 5*s^4], [0, 0 , 1 , 3*s ,6*s^2,10*s^3], [1,x12, 0 , 0 , 0 , 0 ], [0, 0 , 1 , x24 , 0 , 0 ], [0, 0 , 0 , 0 , 1 , x36 ]]))/s^3: # # We compute the universal eliminant by computing a Gr\"obner basis. This # computation proceeds over the function field R(s,t,u) and the # Gr\"obner basis consists of 3 polynomials, with the first the # universal eliminant, a univariate polynomial in x36 of degree 6. # G:=gbasis([Poly(s),Poly(t),Poly(u)],plex(x12,x24,x36)): # UniversalEliminant:=G[1]; # # We compute the Discriminant of the UniversalEliminant. # Discriminant:=factor(sort(primpart(discrim(UniversalEliminant,x36)),[s])); # # Of the factors, only one is not itself a square; we show that factor # is a sum of squares. # simplify(op(4,Discriminant) - ( 7/2*(s-t)^2*(s-u)^2*(t-u)^2 + 1/2*s^2*(t-u)^4 + 1/2*t^2*(s-u)^4 + 1/2*u^2*(s-t)^4 )); # # Interestingly, even the squared factor is a sum of squares: # simplify(op(1,op(5,Discriminant)) - ( 16*(s-t)^2*(s-u)^2*(t-u)^2 + 112*(s^4*(t-u)^2+t^4*(s-u)^2+u^4*(s-t)^2) + 112*(s^2*t^2*(s-t)^2+ t^2*u^2*(t-u)^2+ s^2*u^2*(s-u)^2) + 309*s^2*t^2*u^2 + 16*(s^2*t^4 + s^4*t^2 + t^2*u^4+u^2*t^4 + s^4*u^2+u^4*s^2))); # # It follows that the number of real roots to the system is independent of # the choice of real values for s, t, and u. Thus we need only show that there # are 6 real roots for a single choice of the parameters. # fsolve(subs(s=1,t=2,u=3,UniversalEliminant)=0); quit;