#2e5p2.maple # # This is an attempt to show Shapiro's # Conjecture for the case of 2-planes in C^7 satisfying # (13)^5 = 6. # # We compute the discriminant, a degree 30 polynomial! #interface(quiet=true): with(Ore_algebra): with(linalg): with(Groebner): SmMat := s -> matrix([ [ 1 , s ,s^2, s^3 , s^4 , s^5 , s^6], [ 0 , 1 ,2*s,3*s^2,4*s^3, 5*s^4, 6*s^5], [ 0 , 0 , 1 , 3*s ,6*s^2,10*s^3,15*s^4], [ 0 , 0 , 0 , 1 , 4*s ,10*s^2,20*s^3], [ 1 ,x12,x13, x14 , 0 , 0 , 0 ], [ 0 , 0 , 0 , 1 , x25 , x26 , x27 ]]): AA:=op(2,factor(det(submatrix(SmMat(s),[1,2,3,4,5,6],[1,2,3,4,5,6])))): BB:=op(2,factor(det(submatrix(SmMat(s),[1,2,3,4,5,6],[1,2,3,4,5,7])))): CC:=op(2,factor(det(submatrix(SmMat(s),[1,2,3,4,5,6],[1,2,3,4,6,7])))): DD:=op(3,factor(det(submatrix(SmMat(s),[1,2,3,4,5,6],[1,2,3,5,6,7])))): EE:=op(3,factor(det(submatrix(SmMat(s),[1,2,3,4,5,6],[1,2,4,5,6,7])))): FF:=op(3,factor(det(submatrix(SmMat(s),[1,2,3,4,5,6],[1,3,4,5,6,7])))): GG:=op(3,factor(det(submatrix(SmMat(s),[1,2,3,4,5,6],[2,3,4,5,6,7])))): G:=gbasis([AA,BB,CC,DD,EE,FF,GG], wdeg([1,2,3,1,2,3],[x12,x13,x14,x25,x26,x27])): #for i from 1 to nops(G) do indets(G[i]); od; equations:=[]: for P in G do equations:=[equations[],P,subs(s=t,P),subs(s=u,P)]: od: kernelopts(gcfreq=10000000): GB:=gbasis(equations,wdeg([1,2,3,1,2,3],[x12,x13,x14,x25,x26,x27])): # First 3 equations are linear in some variables: #sort(GB[1],[x12]); #sort(GB[2],[x13]); #sort(GB[3],[x27]); X27:=solve(GB[3]=0,x27): GB2:=[]: for i from 4 to nops(GB) do GB2:=[GB2[],simplify(subs(x27=X27,GB[i]))]: od: #for i from 1 to 9 do indets(GB2[i]); od: with(Groebner): G:=gbasis(GB2,wdeg([1,2,3],[x25,x26,x14])): GG:=gbasis(G,wdeg([1,2,7],[x25,x26,x14])): for i from 1 to 5 do indets(GG[i]); od: G:=gbasis([GG[1],GG[2],GG[3],GG[4]],wdeg([1,7],[x25,x26])): Elim:=G[1]: lprint(Elim): Disc:=primpart(discrim(Elim,x25)): lprint(Disc); time(); quit;