#G24.maple # # Here, we compute the universal eliminant for Shapiro's conjecture when # m=4 and p=2, AND the flags osculate the rational normal # curve at points s,t,u,-s,-t,-u. # interface(quiet=true): with(linalg): with(Groebner): Eq := s -> simplify(det(matrix([ [1, s ,s^2, s^3 , s^4 , s^5], [0, 1 ,2*s,3*s^2,4*s^3, 5*s^4], [0, 0 , 1 , 3*s ,6*s^2,10*s^3], [0, 0 , 0 , 1 ,4*s ,10*s^2], [1,x12,x13, x14 , 0 , 0 ], [0, 0, 1 , x24 , x25 , x26 ]]))/s): Vals:= [s,-s,t,-t,u,-u]: eqs:=[]: for i from 1 to 6 do eqs:=[eqs[],Eq(Vals[i])]: od: G:=gbasis(eqs,wdeg([10,20,30,40,50,60],[x12,x26,x13,x24,x25,x14])): # After computing a grobner basis, we to eliminante the variables by hand H:=[]: for i from 1 to nops(G) do if (indets(G[i])minus {s,t,u,x12,x13,x24,x26})={} then H:=[H[],G[i]]: fi: od: H:=gbasis(H,wdeg([10,20,30,50],[x12,x26,x13,x24])): GG:=[]: for i from 1 to nops(H) do if (indets(H[i]) minus {s,t,u,x12,x13,x26})={} then GG:=[GG[],H[i]]: fi: od: GG:=gbasis(GG,wdeg([10,20,70],[x12,x26,x13])): #print(time(),nops(GG)); HH:=[]: for i from 1 to nops(GG) do if (indets(GG[i]) minus {s,t,u,x12,x26})={} then HH:=[HH[],GG[i]]: fi: od: HH:=gbasis(HH,wdeg([5,60],[x12,x26])): #print(time(),nops(HH)); HH:=gbasis(HH,wdeg([5,66],[x12,x26])): #print(time(),nops(HH)); elim:=HH[2]: # Taking advantage of the fact the eliminant is a polynomial in x12^2 #elim:=subs(x12=x12^(1/2),elim): Disc:=factor(discrim(elim,x12)): nops(Disc); lprint(op(6,Disc)); lprint(`##########################`); lprint(op(5,Disc)); lprint(`##########################`); lprint(op(4,Disc)); lprint(`##########################`); lprint(op(3,Disc)); lprint(`##########################`); lprint(op(2,Disc)); lprint(`##########################`); lprint(op(1,Disc)); time(); quit;