# # The Schubert Calculus tells us that given 3 general 3-planes A,B,C and # 3 general 2-planes X,Y,Z in 5-dimensional space, there are 4 partial flags # H_2 < H_3 such that H_2 meets A,B, and X, and H_3 intersects C in a # 2-dimensional subspace and also meets Y and X. # # We compute the discriminant of the 4-parameter system obtained by fixing # X and C to osculate the rational normal curve at 0 and at infinity. # The discriminant factors, with one factor: # ( 2*E2 + 2*F2 - E1_F1), where E1, E2, (resp. F1, F2) are the elementary # symmetric polynomials in the parameters of the 2-planes Y,Z, # (resp. of the 3-planes A,B). # # This shows that there are distinct values of the parameters where the # Schubert varieties do not meet transversally. # with(linalg): with(Groebner): Mat := s -> matrix([ [1 , s ,s^2, s^3 , s^4 ], # The flag osculating the rational [0 , 1 ,2*s,3*s^2,4*s^3], # normal curve at the point s. [0 , 0 , 1 , 3*s ,6*s^2], # # [0 , 1 , b , 0 , 0 ], # Local coordinates for the partial [1 , a , c , 0 , 0 ], # flag H_2 < H_3 [0 , 0 , 0 , 1 , d ]]): # (Last 2 rows are H_2) # A,B,Y,Z are the equations imposed by A,B,Y,Z on the flag H_2 < H_3. A:=simplify(det(submatrix(Mat(s),[1,2,3,5,6],[1,2,3,4,5]))/s); B:=simplify(det(submatrix(Mat(t),[1,2,3,5,6],[1,2,3,4,5]))/t); Y:=simplify(det(submatrix(Mat(S),[1,2,4,5,6],[1,2,3,4,5]))/S/S); Z:=simplify(det(submatrix(Mat(T),[1,2,4,5,6],[1,2,3,4,5]))/T/T); G:=gbasis([A,B],tdeg(a,b,c,d)); Asol:=solve(G[1]=0,a): YY:=simplify(8*s*t*subs(a=Asol,Y)): ZZ:=simplify(8*s*t*subs(a=Asol,Z)): H:=gbasis([YY,ZZ],tdeg(b,c,d)): Csol:=solve(H[3]=0,c): CC:=simplify(8*s*subs(a=Asol,B)/3): CC:=simplify((8*t*s-3*b*d)*subs(c=Csol,CC)/2/t/s); DD:=H[2]; #Q:=simplify((-3*b*d+8*t*s)*subs(c=Csol,H[4])/s/t): #P:=simplify((-3*b*d+8*t*s)*subs(c=Csol,H[1])/s/t): #H:=gbasis([P,Q,R],tdeg(b,d)); elim:=simplify(CC*coeff(DD,b) - DD*coeff(CC,b)); indets(elim); Disc:=primpart(discrim(elim,d)): fdisc:=factor(Disc): nops(op(1,fdisc)); op(2,fdisc);