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Abstract

The aim of this paper is the study of a relation between posinor-
mality operators and hyponormality operators. It has been proved
that posinormality does not imply hyponormality [9], but properties
of Cesaro matrix and the unilateral shift suggest the plausibility of

the reverse implication.
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1 Introduction

In this paper we study the properties of a large subclass of B(H), the set

of all bounded linear operators 7' : H — H on a Hilbert space H. We refer
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to T*T — TT* as the self - commutator of T, denoted [T*,T]. A self -
adjoint operator P is positive if < Pf, f >> 0 for all f € H; the operator
T is normal if [T, 7] = 0 and T is hyponormal if [T, T is positive. When
T* is hyponormal, we say T is cohyponormal; T is seminormal if T is
hyponormal or cohyponormal. If T is the restriction of a normal operator

to an invariant subspace, then T is subnormal.

If A € B(H) is to belong to our class, then A must not be “too far” from
normal; more precisely, there must exist an interrupter S € B(H) such
that AA* = A*SA, or equivalently, [A*, A] = A*(I — S)A.

Two observations suggest the additional requirement that S be self -
adjoint, even positive: (1) since AA* in self - adjoint, each operator A is
our subclass must satisfy A*S*A = A*S A,

(2) since < SAf,Af >=< A*SAf,f >= ||A*f|]* for all {, the inter-
rupter S must be positive on Ran A (the range of A).

If the posinormal operator A is nonzero, the associated interrupted P
must satisfy the condition ||P|| > 1 since [|A|*> = |[|44*] =
= [|[A*PA|[ < ||A*[| - [|PI| - ||All = [|P]] - [|A]>.

Theorem 1.1. If A is posinormal with interrupter P and A has dense

range, then P is unique.

Proof. See [10].
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2 Examples

The example which motivated this motivated study is the Cesaro matrix

Ch

I
W N~
W N~ O©
W~ O )

regarded as an operator on ‘H = [2. The standard orthonormal basis on [
will be denoted by {e, : n =0,1,2,...}. If D is the diagonal operator with

diagonal {% :n=20,1,2, }, then a routine computation verifies that

LW D= =
LI D= DN —
Wl W W—

CiDC, = = O\ C;

So the Cesaro operator on (I?) is posinormal with interrupter D. C} is known
to be hyponormal, even subnormal (see [4]). In [1], C; is shown to be
hyponormal by looking at determinants of finite sections of [C,C;]. We
include here a brief and different proof - one that takes advantage of the

availability of D.

Theorem 2.1. ' is hyponormal.
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Proof. Since I — D is a positive operator, we have
<[C1,Cilf, f>=< (I - D)Cif,Cif >>0

for all f.
We have, in the Cesaro operator, an example of a nonnormal posinormal
operator. The next proposition provides us with a large supply of additional

examples, including the unilateral shift U.

Propozition 2.1. Fvery unilateral weighted shift with nonzero weights is

posinormal.

Proof. See [10].

It is easy to see that if A is the unilateral weighted shift with weights wy,,
then [A*, A], is the diagonal matrix with diagonal entries {w?, w? —w?, w3 —
w?,...}. If {wy} is increasing, then A is hyponormal. The special case when
wog = 2 and w, = 1 for all £k > 1 provides an example of a posinormal

operator that is neither hyponormal nor cohyponormal.

3 Posinormality versus hyponormality

The next result, from [2], will help settle the question (see Corollary 3.1)
about the relation posinormality - hyponormality.

Theorem (Douglas) For A, B € B('H) the following statements are equiv-
alent:

(1) Ran A C Ran B



Posinormality versus hyponormality for Cesaro operators 37

(2) AA* < A\?BB* for some A > 0; and

(3) there exists a T € B(H) such that A = BT

Moreover, if (1), (2) and (3) hold, then there is an unique operator T
such that:

(a) ||IT|]* = inf{u|AA* < uBB*};
(b) Ker A = Ker T.

We know that a hyponormal operator T must satisfy the inequality
[|T*f|| C ||Tf]| for all f. Statement (a) of the following proposition gives us
an analogous result for posinormal operators; this result, together with the
above theorem of Douglas, will lead to a characterization of posinormality

(see Theorem 3.1).

Propozition 3.1. If A is posinormal with (positive) interrupter P, then the
following statements hold:

(a) ||A*fIl = [IVPAFI| < [[VPI| - ||Af]] for every f in H

(b) IVPA||l = [|All.

Proof. (a) Since A is posinormal and P is positive
|| =< AA"f, f >=< A"PAf, f >=||VPAfI? < |IVP|* - [|AfI]

for all fin H.
(b) From (a) we see that ||A*|| = ||v/PA||, and ||A|| = ||A*|| is universal.
We note that if A is posinormal, the condition (2) in the theorem above
is satisfied with A = |[v/P|| and B = A*. If condition (3) in the theorem
holds, then there is an operator T € B(H) such that A = A*T', so A* = T* A;
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consequently, A is posinormal with interrupter 77*. Thus Douglas theorem

has led almost immediately to the following result.

Theorem 3.1. For A € B(H) the following statements are equivalent:
(1) A is posinormal;
(2) Ran A < Ran A*;
(3) AA* < XN2A*A for some X\ > 0; and
(4) there exists a T € B(H) such that A = A*T.
Moreover if (1), (2), (3), and (4) hold, then there is an unique operator
T such that:
a) [|T?]] = inf{p|AA* < pA*A};
b) Ker A = Ker T.

Corollary 3.1. Every hyponormal operator is posinormal.

Proof. If a is hyponormal, the condition (3) is satisfied with A = 1.

Let [A] = {TA:T € B(H)}, the left ideal in B(H) generated by A. If A
is posinormal, then, because of (4), we have A* = T*A for some bounded
operator T, so A* € [A]. Conversely, if A* € [A], then A* = kA for some
k € B(H), so A is posinormal with interrupter P = k*R. In summary, we

have the following corollary.
Corollary 3.2. A is posinormal if and only if A* € [A].

We note that if A is hyponormal, then for some contraction k, A* = kA

(see [10], p. 3). A straight forward computation shows that in the case of
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the Cesaro operator the contraction k = k(Cy) takes from k(Cy) = (kyn)

where

0, if m>n+1.
It is not hard to verify that k(Cy)* - k(C}) = D.

While the Cesaro matrix C; is hyponormal, the remaining p-Cesaro

matrices:
1 0 0 0
(3) (3) o o
G=1 () (@) @) o

where p > 1 are not (see [7]) there will use Corollary 3.2 to show that all of

these operators are, however, posinormal. Define B, = (b,,,) by

P
1—<Zi%>, if m<n
1

—(%p it m=n+1
0

bmn

if m>n+1.

We observe that By = k(Cy). To see that B, is bounded when p > 1, we
note that this matrix can be decomposed as B, =Y + Z where Y = (y,n)
satisfies Ypmn = bmn when m = n + 1 and y,,, = 0 otherwise (so Y is a
weighted shift) and Z is the upper triangular matrix whose entries on and
above the main diagonal agree with those form B, and whose other entries

are all zero. We note that the entries of Z are all nonnegative. Since
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(n + 1)p D
(n+2)7 < n¥?2 for all p > 1 (see [3, Theorem 42, 2.15.3, page 40]),

Z is entrywise dominated by pCY, an operator known to be bounded; Y

1 —

is clearly a bounded operator, and consequently B, is also bounded and
1Bpl] < IY]] +||Z]] <1+ 2p. A routine computation gives C;; = B,C,,

and the following theorem has been proved.

Theorem 3.2. C, is posinormal for all p > 1.

We have seen that C is posinormal, but what about C;? Corollary
3.2 will help us here also, for it can be verified that C; = BC{ when
B = C, —U* so C; € [Cf]; it can also be easily checked that
k(C)B = I = Bk(C). While B*B is the interrupter for the posinormal
operator C7, the matrix product in the other order takes on a much sim-
pler form; BB* is the diagonal matrix with diagonal {2, %, %, %, } These

observations justify the next theorem and its corollary.

Theorem 3.3. Cf is posinormal with interrupter P = B*B = (Cf —
U)(C,—U").

Corollary 3.3. ||C} — U*|| = V2.
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4 Shift - conjugated Cesaro matrices.

In this section we consider the terraced matrix Ty = (U k)*C’l U*, where U

is an unilateral shift, for positive integers k:

1
T 0 0
11
k+1 k+1
_ 1 1 1
T = F+2 k+2 E+2

Visually, T;.1 can be obtained from the Cesaro matrix C'; by deleting the
first k& rows and columns from C;. We note that in fact for all £ > 0 (and not
just the positive integers) the matrix T} gives a bounded operator on [? : Ty

can be expressed as DC; where Dy is the diagonal matrix with diagonal

k+n
k > 1 (the proof that ||C}|| = 2 appears in [1]), and for 0 < k < 1, we have

{1 T — 0,1, 2, }, it is clear by inspection that ||Ty|| < ||Cy|| = 2 for

|| Tk|| = || DeChl| < || Dkl] - ||C1]] = % Results from [8] and [9] justify the

remaining assertions of the next theorem.

Theorem 4.1. For each k > 0,T} is a bounded operator on 1?; ||Ty|| = 2

when k > 1 and ||T|| < % when 0 < k < 1.

We show that, for all & > 0, T}, is posinormal with interrupter P = (py,)
whose entries are given by

n*+ 2k+Dn+k*+1

(n+k+1)° ’

1—k :
Gy ey ) L if m # n.

ifm=n

Pmn =
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Note that when £ = 1, P reduces to the diagonal operator D. To see
that P is bounded, we observe that P can be decomposed as P = L +
R + C* where R is the diagonal matrix with diagonal from P and L is
the lower triangular matrix whose entries below the main diagonal agree
with those from P and whose other entries are all zero, then ||R|| < 1 and
LI < [k = 1] - |Ch]| = 2|k = 1], so [|P[| <144k — 1].

One can check that PT}, = (a,) has matrix entries satisfying:

n+1

o (m+k+1)(n+k) .
mn 1—k I

RS CE I

ifm>n

using these entries, it is not hard to verify that 7}, 7} = T;; PT},. In order to
see that T} is posinormal, it remains to show that P is positive; it suffices to
show that Py, the N finite section of P; (involving rows m = 0,1,..., N,
and columns n = 0,1, ..., N), has positive determinant for each positive in-

teger N. For columns n = 1,2, N, we multiply the n'* column from Py by

k+n+1
k+n

P}, and note that det Py, = det Py. We now work with the rows of Py: For

and then substract from the (n—1)* column. Call the new matrix

% and then

subtract from the (n—1)* row. The resulting matrix is tridiagonal and also

m = 1,2,..., N, we multiply the m'* row from P} by

has the same determinant as Py; that new matrix is constantly -1 on the two

off-diagonals and is almost constantly 2 on the main diagonal - the only ex-

24+ 2NK + N>+ N +1
(K+ N +1)°

tion, we work this tridiagonal matrix into triangular form: multiply each row

ception is the last entry: . To finish our computa-

m=20,1,...,N—1by % and add to the (m+1)* row. The new matrix
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2
is triangular and has diagonal {2, %, %, e Nﬁ 1, v +]\17)"é_]\l; ++k1+ 1)2};
2
from this we conclude that det Py = %Jrl—;l

We note that the positivity (and uniqueness) of P could have been
demonstrated more briefly using the fact that T, has dense range; however,
our computational procedure provides a springboard for investigating the
positivity of I — P. To see when I — P is positive, we compute det(] — P)y
where (I — P)y is the N finite section of I — P. Following exactly the
same sequence of column and row operations we used for Py, we arrive at

a tridiagonal matrix of the following form:

dy ap 0 0
ap di a 0
?N _ 0 aq dg 0
dv-1 an-—1
0 0 - - ay.; dy
_ 1 _ 2k+2n+3 _ _
where ay = Frn+l dn = m(o <n< N 1), and dN =

%. In transforming Yy into a triangular matrix with the same
determinant, we find that the new matrix has diagonal entries J,, which are

a2

given by a recursion formula: &6y = dy, 6, = d,, — 6”_1 (1<n<N). An

induction argument shows that 9, > M for 0 <n < N —1; since
(n+k+1)

dy departs the pattern set by the earlier d!’ s, d,, must be handled separately:

2 N
an-_1 k—1

J— _ > . _ . .

5N = dN N_12= (N B 1)2 So det([ — P)N jlzlodj >0fork>1

The computation just completed tells us that T} is hyponormal when
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K > 1. Further calculations reveal an exact value for the determinant (we

omit the details):

N N-1
1 1 2k + N
det(I =Py = |[T————| [k =D} - + .
bl = Pl jgoy+k+1 ( );ijwl N+k+1

For k < 1, det(I — P)y is eventually negative, so T} is not hyponormal in

this case. We summarize the main results in the following theorem.

Theorem 4.2. T} is posinormal for all k > 0; T} is hyponormal if and only
if k> 1.

5 Discrete Cesaro operator

In this brief section we consider the lower triangular matrices

01:

A= D= =
W= N—= O
W= O (aw]

regarded as operators on [2. These operators have been studied in [5,6].

Define B = (by,,) by

0, ifm>n-+1.
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We note that B is the contraction (hence bounded) operator k(C) from
section 2. A routine computation gives C| = B(, settling the question of

posinormality for C}.

Theorem 5.1. ] is posinormal.
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