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Abstract

We present some abstract data dependence theorems of the fixed

point set for operators f,g : X XY — X x Y, using the c-Picard

operators technique.
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1 Picard operators, c-Picard operators

In this section we present some definition useful in the next part of the

paper.

Definition 1.1.(I.A. Rus [4]). Let (X,d) be a metric space. An operator
A: X — X s (uniformly) Picard operator (PO) if exists x* € X such that:

(a) Fa={z"},

7
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(b) (A™(x)),en converges (uniformly) to x*, for all v € X

Definition 1.2.(I.A. Rus [4]). Let (X,d) be a metric space. An operator
A X — X is (uniformly) weakly Picard operator (WPO) if:

(a) the sequence (A"(x)),cn converges (uniformly), for all x € X,

(b) the limit (which may depend on x) is a fized point of A.

If A is weakly Picard operator then we consider the following operator:
. A* X — X,
(1) A*>®(x) = lim A" (z).

n—oo

Definition 1.3.(I.A. Rus [2]). Let (X,d) be a metric space. An operator
A: X — X is c-(uniformly) weakly Picard operator (c-WPQO) if:

(a) A is (uniformly) weakly Picard;

(b) exists ¢ > 0 such that.:
) d (2, A°(x)) < e d (z, A(x))
forall z € X.

Example 1.1. Let (X,d) be a complete metric space and an operator
A: X — X such that:

d(A(z), A(y)) < ard(z,y) + ad(z, A(x)) + asd(y, A(y))+

+aud(z, A(y)) + asd(y, A(z)),

with o; > 0,1 =1,5, a1+ ... +ag+2as5 < 1, for all z,y € X. Then A
. . . a1+ ag + as
1s c-Picard operator with c = ——.
— Qg — Q5
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Example 1.2.(L.B. Ciri¢ [1]). Let (X,d) be a complete metric space and
an operator A : X — X such that:

d(A(z), Aly)) <

< @ -max {d(% y), d(z, A(z)), d(y, Ay)), % [d(z, Aly)) + d(y, A(l’))]} ,

with o € [0;1], for all x,y € X. Then A is c-Picard operator with
1
c—

C1l-—a

For other examples of c-Picard operators see S. Muresan, I.A. Rus [3],
I.A.Rus [4].
An important data dependence result which is used in our paper is the

following:

Theorem 1.1.(I.A.Rus, S. Muresan [3]). Let (X, d) be a metric space. and
Ay, Ay 0 X — X two operator such that.:

(i) A; is c;—WPO, i = {1,2};
(i) exists n > 0 such. that.: d(Ai(z), Ax(x)) <mn, for allz € X
Then:
(3) H (Fa,, Fa,) <n-max{c,c},

where H is Hausdorff-Pompeiu metric on P(X).

2 Fixed point theorems

In this section we present some fixed point theorems for operators

f: X xY — X xY, where X, Y are metric spaces.

Theorem 2.1. Let (X,d), (Y,p) be two complete metric spaces and
[:X XY = X XY, f=(f,/f). Suppose there exist 1,15 : R} — Ry

continuous functions such that:
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d(fi(z1,91), fi(z2,92)) < ¥a(d(xr, 22), p(y1,y2), A2, fi(z1,91)),
(i) d(@2, f1(z2,92)), d(1, fi(22, y2)),
d(2, fi(z1,91)) ),
(w1,1), (T2,92) € X XY

p(fa(z1, 1), f2(2,42)) < ol d(z1, 22), p(y1, y2), p(y1, fo(21,91)),
(it) P(Y2, f2(22,92)), p(y1, fa(z2, Y2)),
p(Y2, f2(T1,91)) ),
(w1,71), (T2,92) € X XY

(i) for any ty,ts € RS such that t; <ty we have ¥;(t1) < ¢;(t2), i = 1,2;
(ZU) 77D1<t1 + tz) < wi(tl) + wi<t2); fOT all t1,to € Ri, 1= m;

(v)  for any X € Ry we have ;(Mt) < My(t), for allt € RS, i =1,2;
(UZ) wl(oaoaoalalao) <1 and wl(laoaoalalao) < 17

(vii) 1(0,0,0,1,1,0) < 1 and ¥(0,1,0,1,1,0) < 1;
d}l(la 07 17 07 ]-7 O)

i <1
(vitt) T 0,0,0,1,1,0) < U
. 1/12(0717170717(»
1:
(@) 000110 5
0,1,0,0,0,0 1,0,0,0,0,0
([E) w1<77777> ¢2(777,,)<1.

1—141(1,0,0,0,1,1) 1 —15(0,1,0,0,1,1)

In these conditions we have that Fy = {(z*,y*)}.

Proof. From conditions (i)-(ix) we obtain that Fy ., = {z*(y)} and
Fry@y = {y* ()} (see M.A. Serban [5])
We define the following operators:

P:Y—-X

(4) P(y) =2"(y) € Fr,(y
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Q:X—-Y
Q () =y"(7) € Fya,)

It is easy to check that P and Q are lipschitz:

(5)

11(0,1,0,0,0,0)
(6) d(P(y1), P(y2)) < 1— ¥1(1,0,0,0,1,1

) 'P(Z/l,y2)>

(7) p(Q(x1), Q(x2)) < ¥2(1,0,0,0,0,0)

-d
=1 4»(0,1,0,0,1,1) (21, 72),

which implies that P o () is contraction on X, therefore we have that
Fpog = {z*} and (z*,Q (z*)) € Fy. The uniqueness of fixed point for f
is obtained from the uniqueness of z* as a fixed point for P o Q).

Using this general result we obtain the following fixed point theorems.

Corollary 2.1. Let (X,d), (Y,p) be two complete metric spaces and
f: X XY —=XXY, f=(fi,f). Suppose that:

d(fi(z1, 1), fi(ze,12)) < oqnd(zy,z2) + aap(yr, Y2)+
(i) tazd(xy, fi(z1,y1)) + aud(wy, f1(22,¥2))+
+asd(z1, fi(ze, y2)) + asd(x2, fi(z1,1)) ),

(1,11), (22,92) € X X Y;

p(fZ(xlayl)a f2(x27 3/2)) < ﬁl d($1,$2) + ﬁZp(yla y2)+
(i) +0830(y1, f2(1,91)) + Bap(y2, fa(x2, y2))+
+850(y1, f2(2,y2)) + Bop(ya, fa(z1,11)) ),

(z1,91), (72,902) € X X Y
(ZZZ) 041+O[2+O./3+Oé4+20é5+066<1, @i€R+,i:1,_6,'

(iv) i+ Bo+ B3+ Ba+20s+ B <1, 3 €Ry, i =1,6.

In these conditions we have Fy = {(z*,y*)} .



82 Marcel-Adrian Serban

Proof. We'll apply Theorem 2.1 for

6
V171,72, 73,74, 75, 76) = Z@i.ri’

i=1

6
wQ(Tl,Tg,Tg,T4,T5,T6) = Zﬁzﬂ

=1

Conditions (iii)-(x) are easy to check.

Corollary 2.2. Let (X,d), (Y,p) be two complete metric spaces and
f:XxY = XXxY, f=(fi,f2). Suppose that:

d(fi(z1,y1), [1(22,92)) o max{d(z1,z2), p(y1,2),
(i) d(z1, f1(z1,91)), (2, f1(22,92)),
d(z1, f1(22,92)), d(w2, fi(z1,91))},
(@1,91), (z2,92) € X XY

p(faz1, 1), fo(22,92)) < B-max{d(x1,22), p(y1, y2),
(it) p(y1; fo(71,91)), p(Y2, fa(Ta, y2)),
p(y1, f2(T2,y2)), p(Y2, fo(1, 1))},
(T1,91), (T2,92) € X X Y

(111) o« € [0;1] si 5 € [0;1] such that:
o g

—— < 1.
l—a 1-0

In these conditions we have Fr = {(x*,y*)}.

Proof. We'll apply Theorem 2.1 for

¢1(T1,T2,7’3,7’4,T5,7’6) = a'm%{ri}a
i=1,

¢2<T1,7"2,7"3,7"4,7’57T6) - ﬁm%{rl}a
i=1,

Conditions (iii)-(x) are easy to check.
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3 Data dependence theorems

In this section we present a result of data dependence of the fixed points for
two operators f,g: X xY — X x Y. For better understanding we give this
result in the particular case of Corollary 2.1 when a3 = a4 = a5 = ag = 0
and 33 = B4 = O5 = (g = 0, the general case of Theorem 2.1 can be treated

similarly..

Theorem 3.1. Let (X,d), (Y,p) be two complete metric spaces and
[ig: X XY = X XY, f=(f1,f2), 9= (91,92). Suppose that:

(i) there exist ay,as,by,bs € Ry, with a; <1 and by < 1, such that

d(f1(z1,y1), [1(22,92)) < a1 d(z1, 22) + azp(y1, ya),
p(f2(x1,91), fa(Ta,y2)) < by d(w1, T2) + bap(y1, y2),
(1,1), (T2,92) € X XY

(i) there exist ay, ag, B, P2 € Ry, with a; < 1 and By < 1, such that
d(g1(71,91), 91(22,92)) < a1 d(w1,2) + asp(ys, y2),
p(g2(w1,51), 92(w2, 42)) < Prd(w1, x2) + Bap(yr, y2),

(z1,91), (22,92) € X X Y

(iii) - a‘?bi 5y < 1;

(ZU) #’61) < 1,

(v) there exits n1,ne € Ry such that

d(fl(xvy)vgl(xvy» < Ui

p(fQ(x7y)7g2(x7y)) < 2

for any (z,y) € X xY;
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Then we have:

. s 1 1
d(xf,xg)gn-max{l_)\f;l_/\g},

p(y*y*)<¢-max b1
799) = L—X"1=) )
&
(

where ;
a901 Q201
A= and A, = ,
P71 —ar) (1= by) T (1—o) (1)
77:Tl+72'min{ a2 ; @ }7
1—&1 1—&1
b
T:Tg+71.min{1_162;1€162},

. 1 1
=7, - Min :
1 Ui 1_0/1,1_&1 )

: 1 1
=17 -mng ——; — .

Proof. Conditions (i)-(iv) show that f, g are in the conditions of Corollary
2.1, thus Fy = {(m?,y})} and F, = {(x;,y’g*)}. We define the operators
Pr, Qy, respectively Py, Q, as in (4) and (5) corresponding to operator f,
respectively to operator g. We have that Py o ()5 is As-contraction and
P,0Q, is A\s-contraction, which mean that Pro Qs and P, o), are c-Picard

operators with constants

1 1
cle_)\f and ¢, =

We have that

d(Pr(y), Py (y) <d(fi(Pr(y),v),01(Pr(y),y)) +

+d (g1 (Pr (v),v), 91 (Py (), ) <m +and (P (y), Py (y))
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and also
d(Pr(y), Py (y) <d(g1 (P (v),y), f1 (FPy(y),y)) +

+d (f1 (Py (y),y), fr (Pr(y),y)) <m +ard (Py(y), Py (y))

which imply

4Py (), £y ) < e min {1t

In a similar way we can prove

P(@r(0).Q () < memin {2 2L

Wedenotebyﬁ:m-min{; L }andTQ:ng-min{ﬁ;ljﬁg}.

1—a1’ 1—a

We have the estimation

d(PyoQp(x),PyoQy(x)) <d(Pr(Qy(x)), Py (Qr (x))) +

(%) &%)

+d (Py (Qy (2)), Py (Qg (2))) < 11+ p(Qf (), Qq (7)) < 7'1+1

.T2
1—oy —

and also

d(PpoQy(x), PyoQy(x)) <d(Fy(Qy(x)), Pr(Q(x)),)+

a2

-’7—2

+d (Pr(Qy (2)), Py (Qs () <1+ -p(Q (2), Qg (2)) = 71 + 5

which imply

. a o
d(ProQy(x),PyoQq(x)) <7+ 7 min N =1
1—a1 1—051

From Theorem 1.1 we conclude

. 1 1
d(mf,xg) §n-max{1_)\f;1_)\g}.
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Using the same technique we can prove that

b
p(QfOPf(y)anOPf(y))§7'2+T1-min{rlb2;1f—l&}::7'

and therefore, from Theorem 1.1, we conclude

p(yjy) < 7-max{ ——;— |,
fr% = 1— A 1=,

Thus the theorem is proved.
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