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Abstract

The article presents some results concerning H-bases and theirs

applications in multivariate interpolation. We derived the space of

reduced polynomials with respect to a particular inner product. We

made some connections with least interpolation and presented two

application of the connection between spaces of reduced polynomials

modulo a H-basis and spaces of ideal interpolation.
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1 Introduction

The article is organized in four sections. In section two, we presented

the concept of H-bases for an ideal and the reducing process of a polynomial

modulo a vector of polynomial and then, modulo a H-basis of an ideal. This
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reduction process is dependent of the inner product used. We presented two

known inner products and reduced spaces of polynomials. The study of the

space of reduced polynomial with respect to the inner product defined in

(18) gives the main results of this section.

In section three we presented the connection between the spaces of re-

duced polynomials modulo the ideal I = kerΛ and the interpolation space

given by the conditions Λ( we consider only the case when kerΛ is a poly-

nomial ideal).

In the last section we presented two applications of the results obtained

in section three. These applications use the connection between the least

interpolation space ΠΘ, defined by C. de Boor and A. Ron, and the space

of reduced polynomials with respect to the inner product defined in (15).

2 Reduction process modulo a H-bases for

an ideal

The H-bases concept was introduced by F.S. Macauley and it is based

only on the homogeneous terms of polynomials. The references [4], [7], [9]

can be use for more details related to H-bases and Gröbner basis.

Next, we will use the notations: Π for the space of all polynomials in

“d”-variables, Πk for the space of polynomials of degree less and equal k,

and Π0
k for the space of homogenous polynomials of degree in “d” variables.

For any p ∈ Π, we call leading term of p, and denote it by p↑, the unique

homogeneous polynomial for which deg(p− p↑) < deg p.

Definition 2.1. A set of polynomials H = {h1, . . . , hs} ⊂ Π \ {0}, is a

H-basis for the generated ideal I =< H > if for any p ∈ I, p 6= 0, there is
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an unique representation of p in terms of H:

p =
s∑

i=1

higi, gi ∈ Π and deg(hi) + deg(gi) ≤ deg(p).(1)

The representation given in (1) is named the H-representation of poly-

nomial p.

Proposition 2.1. A finite set of polynomials, H = {h1, . . . , hs} ⊂ Π \ {0},
is a H-basis for the ideal I =< H > if and only if

M(I) = {p↑ | p ∈ I} =< p↑ | p ∈ H >,(2)

with M(I) the homogeneous ideal generated by I.

In [2], C. de Boor characterizes a H-basis using its connection with the

homogeneous ideals I0
k .

If H is a H-basis for the ideal I, then, for all k ∈ N

Ik = I ∩ Πk =
∑

h∈H
ph · h, with ph ∈ Πk−deg(h)

and

I0
k = {p↑ | p ∈ I} ∩ Π0

k =
∑

h∈H
p̃h · h↑, cu p̃h = ph↑∈ Π0

k−deg(h).(3)

Consequently, f ∈ I, if and only if there exist polynomials ph ∈ Π0
deg(f)−deg(h)

such that

f↑=
∑

h∈H
ph · h↑ and more,(4)

f̃ = f −
∑

h∈H
ph · h ∈ I(5)
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Condition (5) allows us to construct a H-basis using an inductive con-

struction of the finite sets Hk = H ∩ Πk, such that

Ik =
∑

h∈Hk

ph · h, with ph ∈ Πk−deg(h)(6)

Therefore, the H-bases can be used to transform a problem from the

infinite space of all polynomials in d variables, in one ore more problems in

the finite dimensional spaces of polynomials I ∩ Πk.

Obviously, any ideal has a H-basis.

The H-bases are deeply connected to the reduction process of a polyno-

mial.

Definition 2.2. Let be the polynomials f, f1, . . . , fm ∈ Π. We say that f

reduces to f̃ modulo F = {f1, . . . , fm}, if the following equality holds

f̃ = f −
m∑

i=1

gi · fi and deg(f̃) < deg(f),(7)

and the polynomials gi satisfy the inequalities:

deg(gi) ≤ deg(f)− deg(fi), i = 1, . . . , m.(8)

In that case we use the notation f →F f̃ .

We denote by
∗→F the transitive closure of the binary relation →F .

Proposition 2.2. The finite set H = {h1, . . . , hs} is a H-basis for the ideal

I =< H > if and only if any function f ∈ I is reduced to 0 modulo H.

Some finite dimensional vectorial spaces are usefully in order to construct

a H-basis for an ideal.

Let p1, . . . , pm ∈ Π and n ∈ N . We defined the spaces:

Vn(p1, . . . , pm) =

{
m∑

i=1

qi · pi↑ | qi ∈ Π0
n−deg(pi)

; i = 1, . . . , m

}
⊂ Π0

n(9)
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and Π0
k = {0}, if k < 0.

If I is a polynomial ideal, then we denote by

Vn(I) = {f↑ | f ∈ I; deg(f) = n} ⊂ Π0
n(10)

Let consider an inner product on the polynomial space Π. This inner

product induces an orthogonality and, hence we can define the following

decomposition in orthogonal components:

Π0
n = Vn(p1, . . . , pm)⊕Wn(p1, . . . , pm)(11)

Π0
n = Vn(I)⊕Wn(I)(12)

The reduction process given in definition 2.2, can be generalized induc-

tive for every homogeneous components. For a given inner product, a given

vector of polynomials (p1, . . . , pm) ∈ Πm and n ∈ N , we make the decom-

position of space Vn(p1, . . . , pm), defined in (9), in successive orthogonal

components:

Wn(p1) = Vn(p1)

. . .

Wn(p1, . . . , pj) = Vn(p1, . . . , pj)ª Vn(p1, . . . , pj−1), j = 2, . . . , m,

and we obtain:

Vn(p1, . . . , pm) =
m⊕

j=1

Wn(p1, . . . , pj)

In general this decomposition depends on the order of polynomials p1, . . . , pm.

Proposition 2.3. (T.Sauer, [9]). For an arbitrary, given order of poly-

nomials in the vector P = (p1, . . . , pm), any polynomial p ∈ Π, admits a
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representation in terms of P, given by :

p =
m∑

k=1

qk · pk + r, with deg(qk) + deg(pk) ≤ deg(p) and(13)

r =

deg(p)∑
n=0

rn, with rn ⊥ Vn(p1, . . . , pm).(14)

The term r is named the reduced part of p with respect to the vector P and

is denoted by r = p →P .

The proposition 2.3 is in fact, a Gram -Schmidt type algorithm of or-

thogonalization and represent a multidimensional generalization of Euclid

algorithm ( see [7]).

The generalization of the reducing process is given in the following defi-

nition:

Definition 2.3. (T.Sauer, [9]). A polynomial f ∈ Π, is named reduced with

respect to the vector of polynomial P = (p1, . . . , pm), if each homogeneous

component of f is reduced to zero. Consequently, if

f =

deg(f)∑
j=0

fj; fj ∈ Π0
j , j = 0, . . . , deg(f)

then, we say that f is reduced with respect to P if and only if

fj ⊥ Vj(p1, . . . , pm), j = 0, . . . , deg(f).

If the reduced part, r, is not zero, it will depend on the order of poly-

nomials in the vector P . The reduced polynomial depends on the inner

product used in the direct sum decomposition of the space Vn(p1, . . . , pm).

Different inner products, will usually give different classes of reduced poly-

nomials.

H-bases have a special property into reduction process:
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Proposition 2.4. (H. M. Möller, T. Sauer, [7]). Let H a H-basis for the

ideal I =< H >. Then the reduced polynomial r, obtained by the reduction

algorithm given in 2.3 is independent of the order of the elements in H.

The dependence of the spaces of reduced polynomials with respect to

a H-basis, using different inner product, was studied by many authors. T.

Sauer, in [9], proves the following proposition:

Proposition 2.5. Let H ⊂ Π a H-basis for the ideal I =< H >. Then a

polynomial q is reduced with respect to the inner product

< f, p >= (p(D)f)(0) =
∑

α∈Nd

Dαp(0)Dαf(0)

α!
(15)

if and only if

q ∈
⋂
p∈H

ker p↑ (D) =
⋂

p∈<H>

ker p↑ (D)(16)

with p(D) the differential operator with constant coefficients associated to

the polynomial p.

W. Gröbner, in [5], proved that, a polynomial is reduced with respect to

the inner product

(p, q)∗ =
∑

α∈Nd

pα · qα,(17)

with p =
∑

|α|≤grad(p)

pαxα and q =
∑

|α|≤grad(q)

qαxα, if and only if is in Macaulay

inverse systems space.

We considered another inner product, we denoted by < f, g >a and stu-

died the space of reduced polynomials with respect with this inner product.

< f, g >a=

1∫

0

f(at)g(at)dt, a ∈ Rd \ {0}, given.(18)
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This inner product has an interesting property, that is, only parameter

”a” gives to a polynomial the property to be reduced or not with respect

to this inner product, whatever is the vector of polynomials with respect to

which we make the reduction.

Proposition 2.6. A polynomial f ∈ Πn is reduced modulo a vector of poly-

nomials H = {h1, . . . , hm}, with respect to the inner product in (18), if

and only if f [j](a) = 0, for all j = 0, . . . , n, f [j] being the homogeneous

component of f , of degree j.

Proof. Necessity: if f is reduced modulo H, then, using definition 2.3,

f [j] ⊥ Vj(h1, . . . , hm), for all j = 0, . . . , n. Therefore

1∫

0

f [j](at)g(at)dt = 0, for all g ∈ Vj(h1, . . . , hm),

that is, for any g =
m∑

i=1

hi↑ qi, with qi ∈ Π0
j−grad(hi)

.

But, both f [j] and g are homogeneous polynomials of degree j. Conse-

quently,

m∑
i=1

f [j](a) · (hi↑ qi)(a)

1∫

0

t2jdt = 0, for all qi ∈ Π0
j−deg(hi)

.

Hence f [j](a) ·
m∑

i=1

(hi ↑ qi)(a) = 0, for all qi ∈ Π0
j−deg(hi)

, or equivalent

f [j](a) = 0.

Sufficiency: if f [j](a) = 0, for all j = 0, . . . ,m, then
1∫
0

f [j](at)g(at)dt = 0, for all g ∈ Vj(h1, . . . , hm), that is < f [j], g >a= 0,

for all g ∈ Vj(h1, . . . , hm). Consequently, f is reduced modulo H, with res-

pect to the inner product < ·, · >a.



H-Bases and Interpolation 71

Let denote by α = (α1, . . . , αd) ∈ Nd a multiindex, |α| = α1 + . . . + αd

and Dα = Dα1
1 . . . Dαd

d . A polynomial is denoted by f =
∑

|α|≤deg f

cα(·)α.

Corollary 2.1. A necessary condition for a polynomial f to be reduced with

respect to the inner product < ·, · >a, modulo a vector of polynomials is that,

for the multiindex α with |α| = 0,cα = 0.

Proposition 2.7. A polynomial q ∈ Π is reduced with respect to the inner

product < ·, · >a, modulo an arbitrary vector of polynomials if and only if:

q ∈
deg(q)⋂
j=0

ker δj,a,(19)

with

δj,a : Π → R

δj,a(f) = f [j](a),
(20)

and f [j] are the homogeneous components of f .

Proof. Let q ∈ Πn q ∈ ⋂n
j=0 ker δj,a if and only if δj,a(q) = 0, for all

j = 0, . . . , n if and only if q[j](a) = 0, for all j = 0, . . . , n, hence proposition

2.7 holds.

3 H-basis and interpolation

Many papers underline the connection between the spaces of reduced

polynomials with respect to a H-basis of an zero dimensional ideal , I =

ker Λ, (Λ ∈ Π′, finite) and the interpolation spaces associated to conditions

Λ, ([1], [3], [9], [6], etc.).

If Λ gives an ideal interpolation scheme, that is I = ker Λ is a polynomial
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ideal, then the ideal I determines the finite dimensional quotient space, Π/I ,

and an equivalence class, with representant f is given by

[f ] = {p ∈ Π | p− f ∈ I}

More, we have dim Π/I = card Λ.

Two interpolation spaces P1, P2 ⊂ Π, with respect to the same condi-

tions Λ, are equivalent modulo I, that is for any p1 ∈ P1 there exists p2 ∈ P2

such that p1 − p2 ∈ I and reciprocally (obviously dim P1 = dim P2 =

card Λ).

It is proved in [9] and [7], that every H-basis of ideal I = ker Λ defines

a minimal interpolation space.

Theorem 3.1. Let Λ ⊂ Π′ be a set of conditions which defines an ideal

interpolation scheme and H a H-basis for the ideal ker Λ. Then the space

of polynomials reduced modulo H, PH = Π→H, is a minimal interpolation

space with respect to Λ, and the interpolation operator associated is the

operator of reducing modulo H, that is

LPH(q) = q →H; q ∈ Π.(21)

Taking into account theorem 3.1 we can construct an ideal of finite codi-

mension, I = ker Λ, card Λ < ∞, if we know a minimal interpolation space

for Λ and the interpolation operator.

Proposition 3.1. (T. Sauer, [6]). Let Λ be a set of conditions which give

an ideal interpolation scheme and IΛ = ker Λ. Let L be the interpolation

operator of this scheme. Then the ideal IΛ is given by

IΛ = {f − L(f) | f ∈ Π}(22)
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4 Applications

In this section we apply the results in previous section to least interpo-

lation.

Least interpolation is an interpolation scheme introduced by C. de Boor

and A. Roon, first for a set of conditions consisting in evaluation functionals

on a set of points in Rd.

For any f ∈ A0, we define the least term, f↓= Tjf , with j the smallest

integer for which Tjf 6= 0 and Tjf the Taylor polynomial of degree ≤ j.

Let Θ ⊂ Rd and the spaces:

ExpΘ = span{eθ; θ ∈ Θ}, ΠΘ = (ExpΘ)↓= span{g↓; g ∈ ExpΘ}

C. de Boor and A. Roon proved that the pair (Θ, ΠΘ) is always correct.

They named this interpolation scheme, ”least interpolation”.

The main results in this section are two applications given in the propo-

sitions 4.1 and 4.

Proposition 4.1. Let Θ = {θi | θi ∈ R2, i = 1, . . . , n} a finite set of points

situated on unit circle. If n = 2(q + 1)(4q + 3), q ∈ N∗, then

q+1∑

l=0


 2q + 1

l


 D(2(2q+1−l),2l)u = 0, for all u ∈ ΠΘ,(23)

Proof. We know that IΘ = ker Θ is a polynomial ideal. Let be H a

H-basis for the ideal IΘ, with respect to the inner product defined in (15).

We observe that dim Π2(2q+1) = card Θ, but

p(x, y) = 1− (x2 + y2)2q+1 ∈ Π2(2q+1) ∩ ker Θ; (x, y) ∈ R2(24)

Hence, the pair (Θ, Π2(2q+1)) is not correct. It is proved by C. de Boor and

A. Roon that the pair (Θ, ΠΘ) is minimal correct. Obviously ΠΘ 6= Π2(2q+1),
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ΠΘ ⊂ Πn, with n > 2(2q + 1)).

Let be u ∈ ΠΘ. Taking into account theorem 3.1, we obtain that u ∈
Π→H and using proposition 2.5 we obtain

u ∈
⋂
q∈H

ker q↑ (D) =
⋂

q∈ker Θ

ker q↑ (D)

The polynomial p, defined in (24) satisfies:

p ∈ ker Θ

p↑ (D) =

q+1∑

l=0


 2q + 1

l


 D(2(2q+1−l),2l),

therefore p↑ (D)(u) = 0, for all u ∈ ΠΘ and that proves (23).

Let Λ = {λ1, . . . , λn} be a set of linear functionals, linear independent.

We define the following spaces:

HΛ = span{λν ; λ ∈ Λ}; HΛ↓= span{g↓; g ∈ HΛ},(25)

where λν is the generating function of the functional λ ∈ Λ. This is the

general case of ”least interpolation”. It is known that

Theorem 4.1.The polynomial subspace HΛ↓ is an interpolation space for

the set of conditions Λ.

Proposition 4.2.([9]) . If Λ gives an ideal interpolation scheme and H is

a H-basis for I = ker Λ and we consider the reduction process with respect

to the inner product given in (15), then

HΛ↓= Π→H(26)
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Let Θ = {θi | θi ∈ R2, i = 1, . . . , n} and ΛM,N the set of functionals

ΛM,N = {λmi,ni
| mi = θi + a; ni = θi + b; a, b ∈ R2; i = 1, . . . , n}

λmi,ni
(p) =

1∫

0

p(mi + (ni −mi)t)dt

and H a H-basis for the ideal IΘ = ker Θ. Then, a polynomial p ∈ HΛM,N
↓

if and only if it is reduced modulo H, with respect to the inner product

given in (15)

Proof. We proved in [10] that HΛM,N
↓= ΠΘ. Using corollary 4.2, we obtain

ΠΘ = Π→H and the proposition 4 holds.
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