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Abstract

In this paper we study a necessary and sufficient condition of the

absolute convergence of a trigonometric Fourier series is established

for continuous 2π-periodic functions which in [−π, π] have a finite

number of intervals of convexity, and whose n-th Fourier coefficients

are O
(
ω

(
1
n ; f

)
/n

)
where ω(δ; f) is the continuity modulus of the

function f .

2000 Mathematical Subject Classification: 42A28, 42A16

Will use the following definition: a serie u0 +u1 +u2 + ... with real terms

is said to be absolutely convergent if the series |u0|+ |u1|+ |u2|+ ... of the

module of its terms is convergent.
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Let ω be an arbitrary modulus of continuity, i.e, a nondecreasing function

continuous on [0, 1], ω(0) = 0 and ω(δ1 + δ2) ≤ ω(δ1) + ω(δ2). Will use the

class of all functions f continuous on [−π, π] for which

ω(δ; f) = sup
|x1−x2|≤δ

|f(x1)− f(x2)| = O(ω(δ)), 0 ≤ δ ≤ 1.

Let M be the class of all continuous 2π-periodic functions f for which

there exists a partitioning of the segment [−π, π] by the points −π =

x1(f) < ... < xm+1(f) = π such that f is convex, or convex, or linear,

on each segment [xk(f), xk+1(f)], k = 1, ..., m.

The Fourier coefficients of a function f with respect to the trigonometric

system will be denoted by an = an(f), bn = bn(f).

Problems parting to the absolute convergence of Fourier series have been

studied quite completely ([4], [5], [6], [7]).

This paper deals with one problem of the absolute convergence of trigono-

metric Fourier series of a function from class M .

The following fact is well known: the Fourier series of any 2π-periodic

continuous even function, convex on [−π, π], converges absolutely (see [7]).

We have obtained the following result:

Theorem 1. If f ∈ M , then for absolute convergence of the Fourier series

of the function f it is necessary and sufficient that

∞∑
n=1

∣∣∣∣f
(

xk(f) +
1

n

)
− f

(
xk(f)− 1

n

)∣∣∣∣
1

n
< ∞, k = 1, ..., n.

Proof. Let f1, f2, f be continuous 2π-periodic functions defined as follows:

f1(x) = 0 for x ∈ [−π, 0], f1 is convex or concave on a segment (0, 1), linear
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on [1, π]; f2(−π) = 0, f2 is linear on [−π,−1], f2 is convex or concave on

(−1, 0], f2(x) = 0 for x ∈ (0, π]; f = f1 + f2.

The theorem will be proved by showing that for Fourier series of f to

converge it is necessary and sufficient that

∞∑
n=1

∣∣∣∣f
(

1

n

)
− f

(
− 1

n

)∣∣∣∣ ·
1

n
< +∞.

This follows from Wiener,s theorem and from the following facts: If the

function f is convex or concave on segment [a, b], then f is a lipschitz

function on any segment [c, d] entirely lying inside [a, b], and the Fourier

series of the functions f(x) and f(x+ c) simultaneously converge or diverge

absolutely.

The function f1 is convex on [0, π] and continuous, which means that

it is absolutely continuous so that one can apply integration by parts and

Newton - Leibnitz formulas to obtain an(f) = an(f1) + an(f2).

an(f1) =
1

π

π∫

−π

f1(t) cos nt dt =
1

π

π∫

−π

f1(t)d
sin nt

n
=

=
1

n


f1(t)

sin nt

t

∣∣π−π −
1

πn
·

π∫

−π

f ′1(t) sin nt dt


 = − 1

nπ

π∫

−π

f ′1(t) sin nt dt =

= − 1

πn

0∫

−π

f ′1(t) sin nt dt− 1

πn

π∫

0

f ′1(t) sin nt dt =

= − 1

πn

1/n∫

0

f ′1(t) sin nt dt− 1

πn

1∫

1/n

f ′1(t) sin nt dt− 1

πn

π∫

1

f ′1(t) sin nt dt.
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The derivative f ′ of the convex or concave function f is monotonous and

therefore, applying the second theorem of the mean value, we obtain:
∣∣∣∣∣∣∣

1∫

1/n

f ′1(t) sin nt dt

∣∣∣∣∣∣∣
=

=

∣∣∣∣∣∣∣
1

πn
f ′1

(
1

n
+ 0

) ε∫

1/n

sin nt dt +
1

πn
f ′1(t− 0)

1∫

ε

sin nt dt

∣∣∣∣∣∣∣
≤

≤ 1

πn2

∣∣∣∣f ′1
(

1

n
+ 0

)∣∣∣∣ +
1

πn2 |f ′1(1− 0)| with
1

n
< ε < 1.

Wherever we come across expressions of the form f ′(x±0), the left and right

limits are considered with respect to the set at whose points the derivative

f ′ exists.

For the convex (concave) function f we have the relation

f(x2)− f(x1)

x2 − x1

≥ f ′(x2 ± 0) ≥ f(x3)− f(x2)

x3 − x2

(
f(x2)− f(x1)

x2 − x1

≥ f ′(x2 ± 0) ≥ f(x3)− f(x2)

x3 − x2

)

where x1 < x2 < x3. Therefore

∣∣∣∣f ′1
(

1

n
6= 0

)∣∣∣∣ ≤
f1

(
1

n

)
− f1

(
1

n + 1

)

1

n
− 1

n + 1

≤

≤ (n + 1)2

(
f1

(
1

n

)
− f1 − f1

(
1

n + 1

))
.

Hence

∞∑
n=1

∣∣∣∣f ′1
(

1

n
+ 0

)∣∣∣∣
1

n2 ≤ 2
∞∑

n=1

(
f1

(
1

n

)
− f1

(
1

n + 1

))
< +∞.
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Since f1 is linear on the segment [ε, π], we have |f ′1(1 − 0)| ≤ β and
∞∑

n=1

|f ′1(1− 0)|/n2 =
∞∑

n=1

β/n2 < ∞.

The function f1 is linear on the segment [1, π], i.e. f ′1(t) = const = β,

so that 1/n

∣∣∣∣
π∫
1

f ′1(t) sin nt

∣∣∣∣ ≤
β
n2 .

Finally, an (f1) = − 1
nπ

1/n∫
0

f ′1(t) sin nt dt + γn, where
∞∑

n=1

|γn| < +∞.

If we introduce the notation In = − 1
πn

1/n∫
0

f ′1(t) sin nt dt, then

an(f1) = In + γn, In = an(fr)− γn.

Since the function f1 has a bounded variation, we have

f1(x) =
a0(f1)

2
+

∞∑
n=1

[an(f1) cos nx + bn(f1) sin nx].

By substituting here x = 0 we obtain
∞∑

n=1

an(f1) < ∞. Therefore
∞∑

n=1

In =

∞∑
n=1

(an(f1)− γn) < ∞.

One can easily verify that the values In do not change their sign for

sufficiently large n. Thus
∞∑

n=1

(In) < +∞. Since |an(f1)| ≤ |In| + |γn|, we

obtain
∞∑

n=1

|an(f1)| < +∞.

In a similar manner we shall show that
∞∑

n=1

|an(f2)| < ∞. We have

|an(f)| = |an(f1) + an(f2)| ≤ |an(f1)|+ |an(f2)| and
∞∑

n=1

|an(f)| < +∞.

Now we consider the coefficients bn(f). We have bn(f) = bn(f1)+bn(f2).

bn(f1) =
1

π

π∫

−π

f1(t) sin nt dt =
−1

π

π∫

−π

f1(t)d
cos nt

n
=

= − 1

π
f1(t)

cos nt

n

∣∣π−π +
1

πn

π∫

−π

f ′1(t) cos nt dt =
1

πn

π∫

−π

f ′1(t) cos nt dt =
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=
1

πn

π∫

0

f ′1(t) cos nt dt = +
1

πn

1/n∫

0

f ′1(t) cos nt dt +
1

πn

1∫

1/n

f ′1(t) cos nt dt+

+
1

πn

π∫

1

f ′1(t) cos nt dt.

The function f1 is linear on the segment [1, π], i.e. f ′1(t) = const = β,

so that

1

n

∣∣∣∣∣∣

π∫

1

f ′1 cos nt dt

∣∣∣∣∣∣
≤ β

n2

Again applying the theorem of the mean, we obtain (with 1
n < ε < 1):

∣∣∣∣∣∣∣
1

n

1∫

1/n

f ′1 cos nt dt

∣∣∣∣∣∣∣
=

=
1

n

∣∣∣∣∣∣∣
f ′1

(
1

n
+ 0

) ε∫

1/n

cos nt dt + f ′1(1− 0)

1∫

ε

cos nt dt

∣∣∣∣∣∣∣
≤

≤ 1

n2

∣∣∣∣f ′1
(

1

n
+ 0

)∣∣∣∣ +
1

n2 |f ′1(1− 0)| < +∞.

Therefore bn(f1) = + 1
πn

1/n∫
0

f ′1(t) cos nt dt + δn,
∞∑

n=1

|δn| < +∞. But,

1

πn

1/n∫

0

f ′1(t) cos nt dt = − 1

πn

1/n∫

0

f ′1(t)(1− cos nt− 1)dt =
1

πn

1/n∫

0

f ′1(t)dt−

− 1

πn

1/n∫

0

f ′1(t)(1− cos nt)dt =
1

πn
f1

(
1

n

)
− 1

πn

1/n∫

0

f ′1(t) · 2 sin2 nt

2
dt,
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∣∣∣∣∣∣
1

πn

1/n∫

0

f ′12 sin2 nt

2
dt

∣∣∣∣∣∣
≤ 2

πn

1/n∫

0

|f ′1(t)| ·
∣∣∣∣sin2 nt

2

∣∣∣∣ = 2|In|.

As we have seen, above
∞∑

n=1

|In| < ∞ and therefore

bn(f1) =
1

πn
f1

(
1

n

)
− Cn =

1

πn
f

(
1

n

)
− Cn,

where
∞∑

n=1

|Cn| < +∞.

In a similar manner it will be shown that

bn(f2) =
1

πn
f

(
− 1

n

)
+ Pn,

where
∞∑

n=1

|Pn| < +∞.

Since bn(f) = bn(f1) + bn(f2), we have

bn(f) = bn(f1) + bn(f2) +
1

πn

{
f

(
1

n

)
+ f

(
− 1

n

)}
+ γ′n,

∞∑
n=1

|γ′n| < ∞,

and the proof is completely.
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