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On a class of convergent sequences defined

by integrals 1

Dorin Andrica and Mihai Piticari

Abstract

The main result shows that if g : [0, 1] → R is a continuous func-

tion such that lim
x→0
x>0

g(x)
x

exists and it is finite, then for any continuous

function f : [0, 1] → R

lim
n→∞n

∫ 1

0
f(x)g(xn)dx = f(1)

∫ 1

0

g(x)
x

dx.

The order of convergence in the above relation, consequences and

some applications are given.
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1 Introduction

There are many important classes of sequences defined by using Riemann

integrals. We mention here only two. The first one is called the Riemann-

Lebesgue Lemma and it asserts that if g : [0, +∞) → R is a continuous

and T -periodic function, then for any continuous function f : [a, b] → R,

0 ≤ a < b, the following relation holds:

(1) lim
n→∞

∫ b

a

f(x)g(nx)dx =
1

T

∫ T

0

g(x)dx

∫ b

a

f(x)dx

For the proof we refer to [3] (in special case a = 0, b = T ) and [8]. In the

paper [1] we have proved that a similar relation as (1) holds for all continuous

and bounded functions g : [0, +∞) → R having finite Cesaro mean. The

second one was given in our paper [2] and shows that if f : [1, +∞) → R is

a continuous function such that lim
x→∞

xf(x) exists and it is finite, then

(2) lim
n→∞

n

∫ a

1

f(xn)dx =

∫ ∞

1

f(x)

x
dx,

for any real number a > 1.

In this paper we investigate the class of sequences defined by

n

∫ 1

0

f(x)g(xn)dx, where f, g : [0, 1] → R are continuous functions. The

main results in [6] are obtained as consequences and some applications are

given.

2 The main results

We begin with two preliminary results.
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Lemma 1. Let g : [0, 1] → R be a continuous function such that

lim
x→0
x>0

g(x)

x
exists and it is finite. Then

(3) lim
n→∞

∫ 1

0

g(xn)dx =

∫ 1

0

g(u)

u
du.

Proof. Define the function h : [0, 1] → R,

(4) h(x) =





g(x)

x
if x ∈ (0, 1]

lim
x→0
x>0

if x = 0

It is clear that h is continuous and denote

H(x) =

∫ x

0

h(t)dt.

We have

n

∫ 1

0

g(xn)dx = n

∫ 1

0

xnh(xn)dx = xH(xn)
∣∣∣
1

0
−

∫ 1

0

H(xn)dx

= H(1)−
∫ 1

0

H(xn)dx =

∫ 1

0

g(x)

x
dx−

∫ 1

0

H(xn)dx.

If 0 < a < 1, then we can write

∣∣∣∣
∫ 1

0

H(xn)dx

∣∣∣∣ ≤
∫ 1

0

|H(xn)|dx =

∫ a

0

|H(xn)|dx +

∫ 1

a

|H(xn)|dx

(5) ≤ a|H(αn
n)|+ (1− a)M,

where αn ∈ [0, a] and M max
t∈[0,1]

|H(t)|.
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Consider ε > 0 such that a > 1 − ε

2M
. Because lim

n→∞
|H(αn

n)| = 0, it

follows that a|H(αn
n)| <

ε

2
for all positive integers n ≥ N(ε). From (5) we

get

∣∣∣∣
∫ 1

0

H(xn)dx

∣∣∣∣ ≤
ε

2
+ (1− a)M <

ε

2
+

(
1− 1 +

ε

2M

)
M = ε,

i.e. lim
n→∞

∫ 1

0

H(xn)dx = 0 and the conclusion follows.

Lemma 2. Let g : [0, 1] → R be a continuous function such that

lim
x→0
x>0

g(x)

x
exists and it is finite. Then for any function f : [0, 1] → R of

class C1,

(6) lim
n→∞

n

∫ 1

0

f(x)g(xn)dx = f(1)

∫ 1

0

g(x)

x
dx

Proof. Denote G(x) =

∫ x

0

g(t)

t
dt, x ∈ [0, 1], and note that

n

∫ 1

0

f(x)g(xn)dx = n

∫ 1

0

xnf(x)
g(xn)

xn
dx

= G(xn)xf(x)
∣∣∣
1

0
−

∫ 1

0

(xf ′(x) + f(x))G(xn)dx

= G(1)f(1)−
∫ 1

0

(xf ′(x) + f(x))G(xn)dx

(7) = f(1)

∫ 1

0

g(x)

x
dx−

∫ 1

0

(xf ′(x) + f(x))G(xn)dx.

We will prove that

lim
n→∞

∫ 1

0

(xf ′(x) + f(x))G(xn)dx = 0.
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Indeed, by considering M = max
x∈[0,1]

|xf ′(x) + f(x)| we have

∣∣∣∣
∫ 1

0

(xf ′(x) + f(x))G(xn)dx

∣∣∣∣ ≤
∫ 1

0

|xf ′(x) + f(x)||G(xn)|dx

≤ M

∫ 1

0

|G(xn)|dx.

Using that lim
n→∞

∫ 1

0

|G(xn)|dx = 0 (see the proof of Lemma 1) the desired

relation (6) follows from (7).

Our main results are the following.

Theorem 1. Let g : [0, 1] → R be a continuous function such that

lim
x→0
x>0

g(x)

x
exists and it is finite. Then for any continuous function

f : [0, 1] → R the relation (6) holds.

Proof. According to the well-known Weierstrass approximation theo-

rem, consider (fm)m≥1 a sequence of polynomials uniformly convergent to f

on the interval [0, 1]. Let ε > 0 be a fixed real number. We will show that

we can find a positive integer N(ε) such that for any n ≥ N(ε) and for any

x ∈ [0, 1], we have

(8)

∣∣∣∣n
∫ 1

0

f(x)g(xn)dx− f(1)

∫ 1

0

g(x)

x
dx

∣∣∣∣ < ε

From technical reasons, take ε′ = ε/

(
2

∫ 1

0

g(x)

x
dx + 1

)
and consider

the positive integer N(ε) with the property that |fm(x)− f(x)| < ε′ for any

x ∈ [0, 1]. Because f and g are bounded it follows that we can assume that

f ≥ 0 and g ≥ 0. For m ≥ N(ε) we have

fm(x)g(xn)− ε′g(xn) ≤ f(x)g(xn) ≤ fm(x)g(xn) + ε′g(xn),
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hence

n

∫ 1

0

fm(x)g(xn)dx− ε′n
∫ 1

0

g(xn)dx ≤ n

∫ 1

0

f(x)g(xn)dx

(9) ≤ n

∫ 1

0

fm(x)g(xn)dx + ε′n
∫ 1

0

g(xn)dx

From Lemma 2 we have

lim
n→∞

n

∫ 1

0

fm(x)g(xn)dx = fm(1)

∫ 1

0

g(x)

x
dx

and

lim
n→∞

nε′
∫ 1

0

g(xn)dx = ε′
∫ 1

0

g(x)

x
dx

and it follows that for any positive integer n ≥ N ′(ε)

n

∫ 1

0

fm(x)g(xn)dx− ε′n
∫ 1

0

g(xn)dx ≥ fm(1)

∫ 1

0

g(x)

x
dx

−ε′
∫ 1

0

g(x)

x
dx− ε′

and

n

∫ 1

0

fm(x)g(xn)dx + ε′n
∫ 1

0

g(xn)dx ≤ fm(1)

∫ 1

0

g(x)

x
dx

+ε′
∫ 1

0

g(x)

x
dx + ε′

But f(1)− ε′ < fm(1) < f(1) + ε′ imply for all n ≥ N ′(ε)

(f(1)− ε′)
∫ 1

0

g(x)

x
dx− ε′

(∫ 1

0

g(x)

x
dx + 1

)
≤ n

∫ 1

0

f(x)g(xn)dx

≤ (f(1) + ε′)
∫ 1

0

g(x)

x
dx + ε′

(∫ 1

0

g(x)

x
dx + 1

)
.
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The last relation is equivalent to
∣∣∣∣n

∫ 1

0

f(x)g(xn)dx− f(1)

∫ 1

0

g(x)

x
dx

∣∣∣∣ < ε′
(

2

∫ 1

0

g(x)

x
dx + 1

)

= ε, for all n ≥ N ′(ε),

and the conclusion follows.

Remarks. 1) Consider the function h : [0, 1] → R,

h(x) =





g(x)

x
if x 6= 0

lim
x→0
x>0

g(x)

x
if x = 0.

Because lim
x→0
x>0

g(x)

x
exists and it is finite, it follows that function h is

continuous on [0, 1]. Applying the result in Theorem 1 we obtain that for

any continuous functions f, h : [0, 1] → R the following relation holds:

(10) lim
n→∞

n

∫ 1

0

xnf(x)h(xn)dx = f(1)

∫ 1

0

h(x)dx

Relation (10) was proved in [6] in the case when f is differentiable and

f ′ is continuous on [0, 1].

2) If u : [0, 1] → R is a continuous function such that its right derivative

at 0 exists and it is finite, then the function g(x) = u(x)−u(0) satisfies the

hypotheses in Theorem 1. From (6) it follows

lim
n→∞

∫ 1

0

f(x)g(xn)dx = 0,

i.e.

(11) lim
n→∞

∫ 1

0

f(x)u(xn)dx = u(0)

∫ 1

0

f(x)dx
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In the paper [6] (see also [3]) is proved that the above relation holds

even f , u are only continuous on [0, 1].

3) If f = 1, the constant function on [0, 1], from (10) we get the result

in paper [7].

The order of convergence in (10) is given in the following result.

Theorem 2. Let f : [0, 1] → R be a function of class C1 and let

h : [0, 1] → R be a continuous function. Then

lim
n→∞

n

[
f(1)

∫ 1

0

h(x)dx− n

∫ 1

0

xnf(x)h(xn)dx

]

(12) = (f(1) + f ′(1))

∫ 1

0

H(x)

x
dx,

where H(x) =

∫ x

0

h(t)dt.

Proof. We can write

n

∫ 1

0

xnf(x)h(xn)dx =

∫ 1

0

xf(x)(H(xn))′dx

= xf(x)H(xn)
∣∣∣
1

0
−

∫ 1

0

(xf(x))′H(xn)dx.

Therefore

n

[
f(1)

∫ 1

0

h(x)dx− n

∫ 1

0

xnf(x)h(xn)dx

]
= n

∫ 1

0

(xf(x))′H(xn)dx.

Functions x 7→ xf(x), x 7→ H(x) satisfy the hypothesis in Theorem 1,

hence we have

lim
n→∞

∫ 1

0

n(xf(x))′H(xn)dx = (f(1) + f ′(1))

∫ 1

0

H(x)

x
dx
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and the desired relation follows.

Remarks. 1) Writing h(x) =
g(x)

x
if x 6= 0 and h(0) = lim

x→0
x>0

g(x)

x
, where

g : [0, 1] → R is a continuous function such that lim
x→0
x>0

g(x)

x
exists and it is

finite, from (11) we derive the following relation

lim
n→∞

[
f(1)

∫ 1

0

g(x)

x
dx− n

∫ 1

0

f(x)g(xn)dx

]

= (f(1) + f ′(1))

∫ 1

0

(
1

x

∫ x

0

g(t)

t
dt

)
dx.

This is the order of convergence in (6) when f is of class C1.

2) If h = 1, the constant function on [0, 1], from (10) we derive Problem

2.83.b) in [3].

3 Some applications

Application 1. 1) If f : [0, 1] → R is a continuous function, then

lim
n→∞

n

∫ 1

0

xnf(x)

1 + x2n
dx =

π

4
f(1).

2) If f : [0, 1] → R is a function of class C1, then

lim
n→∞

n

[
π

4
f(1)− n

∫ 1

0

xnf(x)

1 + x2n
dx

]
= (f(1) + f ′(1))

∫ 1

0

arctg x

x
dx.

These results follows from (6) and (13), where

g(x) =
x

1 + x2
, x ∈ [0, 1].

If f(x) = 1 for all x ∈ [0, 1], then we get Problem 2 of the 12th Form in

final Round of Romanian National Olympiad 2006.
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Application 2. 1) (Romanian National Olympiad, County round 2001,

partial statement) If a > 0, then

lim
n→∞

n

∫ 1

0

xn

a + xn
dx = ln

a + 1

a
.

2) The following relation holds

(14) lim
n→∞

n

(
ln

a + 1

a
− n

∫ 1

0

xn

a + xn
dx

)
=

∞∑
n=1

(−1)n+1

ann2
.

Indeed, taking in (6) f = 1 and g(x) =
x

a + x
we easily derive the first

relation. For the second one we use (13) for the same choosing of functions.

The right hand side in (13) becomes

∫ 1

0

(
1

x

∫ x

0

dt

a + t

)
dx =

∫ 1

0

ln(x + a)− ln a

x
dx

=

∫ 1

0

1

x
ln

(
1 +

x

a

)
dx =

∫ 1

0

1

x

∞∑
n=1

(−1)n+1

n

(x

a

)n

dx =
∞∑

n=1

(−1)n+1

ann2
.

If a = 1, from (14) we get the interesting relation

(15) lim
n→∞

n

(
ln 2− n

∫ 1

0

xn

1 + xn
dx

)
=

π2

12

Application 3. 1) If f : [0, 1] → R is a continuous function, then

(16) lim
n→∞

n

∫ 1

0

f(x) ln(1 + xn)dx =
π2

12
f(1)

2) If f : [0, 1] → R is a function of class C1, then

(17) lim
n→∞

n

[
π2

12
f(1)− n

∫ 1

0

f(x) ln(1 + xn)dx

]
=

3

4
(f(1) + f ′(1))ζ(3),

where ζ is the well-known Riemann,s function.
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To prove (16) we take in (6), g(x) = ln(1 + x). We have

∫ 1

0

g(x)

x
dx =

∫ 1

0

ln(1 + x)

x
dx =

∫ 1

0

1

x

∞∑
n=1

(−1)n+1xn

n
dx

=
∞∑

n=1

(−1)n+1

n2
= ζ(2)− 2

22
ζ(2) =

1

2
ζ(2)

π2

12
.

In order to prove (17) we use relation (13) and observe that in the right

hand side we obtain

∫ 1

0

(
1

x

∫ x

0

ln(1 + t)

t
dt

)
dx =

∫ 1

0

(
1

x

∫ x

0

∞∑
n=1

(−1)n+1tn−1

n
dt

)
dx

=

∫ 1

0

(
1

x

∞∑
n=1

(−1)n+1xn

n2

)
dx =

∞∑
n=1

(−1)n+1

n3
= ζ(3)− 2

23
ζ(3) =

3

4
ζ(3).
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