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Abstract

In this paper we present a study about multipoint model for the

systems describable by differential equations with time delay variable

(like the nuclear reactor model), using the weakly Picard operator

technique. First we study the Cauchy problem atached. Next we

will determine the solution set for the multipoint problem and for

this solution set, we will study the continuity with respect to the

model data, used the weakly Picard operator method. Finally we

will search out a physics representation for these results.
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1 Weakly Picard operators

The notion of weakly Picard operator was introduced by professor I.A. Rus

in 1983. Some of the basic concepts and results can be found in the works

cited list. As it follows, I shall present some concepts and results which are

requisite in this paper.

Let (X, d) be a metric space and A : X −→ X an operator. We shall

use the following notations:

FA := {x ∈ X | A(x) = x}- the fixed point set of A.

I(A) := {Y ⊂ X | A(Y ) ⊂, Y 6= ∅}-the family of the nonempty invariant

subsets of A.

An+1 := A ◦ An A0 = 1X , A1 = A, n ∈ N.

Definition 1.1.[1],[2] An operator A is weakly Picard operator (WPO) if

the sequence

(An(x))n∈N

converges , for all x ∈ X and the limit (which depend on x ) is a fixed point

of A.

Definition 1.2.[1],[2] If the operator A is WPO and FA = {x∗} then by

definition A is Picard operator.

Definition 1.3.[1],[2] If A is WPO, then we consider the operator

A∞ : X → X,A∞(x) = lim
n→∞

An(x).

We remark that A∞(X) = FA.

Definition 1.4.[1],[2] Let be A an WPO and c > 0.The operator A is c-

WPO if

d(x,A∞(x)) ≤ c · d(x,A(x)).
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We have the following characterization of the WPOs:

Theorem 1.1.[1],[2]Let (X, d) be a metric space and A : X → X an opera-

tor .The operator A is WPO (c-WPO) if and only if there exists a partition

of X,

X =
⋃

λ∈Λ

Xλ

such that

(a) Xλ ∈ I(A)

(b) A | Xλ : Xλ → Xλ is a Picard (c-Picard) operator, for all λ ∈ Λ.

For the class of c-WPOs we have the following data dependence result:

Theorem 1.2.[1],[2] Let (X, d) be a metric space and Ai : X → X, i = 1, 2

an operator.We suppose that :

(i) the operator Ai is ci − WPO, i = 1, 2.

(ii) there exists η > o such that

d(A1(x), A2(x)) ≤ η, (∀)x ∈ X.

Then

H(FA1 , FA2) ≤ η max{c1, c2}.

Here stands for Hausdorff-Pompeiu functional.

Lemma 1.1. Let (X, d) be a metric space, A,B ∈ P (X) and ε > 0. Then

for each a ∈ A, there exists b ∈ B such that

d(a, b) ≤ H(A,B) + ε
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2 Main results

In [6] occurs the following multipoint model of the nuclear reactor dynamics

(1) N ′

k =
ρk − βk

l
Nk +

mk
∑

i=1

λikCik+

M
∑

j=1

αkj

l

∞
∫

0

ϕkj(τ)Nj(t − τ)dτ,

(2) C ′

ik =
βik

lk
Nk − λikCik

where: k = 1,M , i = 1,mk, βk =
mk
∑

i=1

βik, M is the radiation zones number of

the reactor, αkj is the neutron coupling coefficient between k and j zones,

and ϕkj is the time distribution function of j to k neutron zone transition

probability, Nk is the neutron density, Cik, λik , βik are the concentration,

the disintegration constant and the source of radiation fraction of retarded

neutron i group, for each k zone, respectively. We study bellow the M = 2

case, the general case been enable in similarly treatment.

We denote by:

A(t) =

(

ρ1(t)−β1

l
0

0 ρ2(t)−β2

l

)

∈ M2×2(R)

N =

(

N1

N2

)

∈ M2×1(R)

C =

























C11 0
...

...

Cm11 0

0 C12

...
...

0 Cm22

























∈ M(m1+m2)×2(R)
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Λ =

(

λ11 . . . λm11 0 . . . 0

0 . . . 0 λ12 . . . λm22

)

Λ ∈ M(m1+m2)×2(R)

Ω =

























β11

l
0

...
...

βm11

l
0

0 β12

l
...

...

0
βm22

l

























∈ M(m1+m2)×2(R)

B(τ) =

(

α11

l
ϕ11(τ) α12

l
ϕ12(τ)

α21

l
ϕ21(τ) α22

l
ϕ22(τ)

)

∈ M2×2(R)

It follow that the equations (1) and (2) are equivalents with:

(3)



















N ′(t) = A(t)N(t) + ΛC(t) +

+
∞
∫

0

B(τ)N(t − τ)

C ′(t) = ΩI2N(t) − ΛtCt(t)

where:

(a) N ∈ C((−∞, T ],M2×2(R)) ∩ C1([0, T ]);

(b) C ∈ C([0, T ],M(m1+m2)×2(R)) ∩ C1[0, T ];

Next we denote by

X = B((−∞, T ],M2×1(R)) =

= {x ∈ C((−∞, T ],M2×1(R)) | x is bounded}
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and

Y = C([0, T ],M(m1+m2)×2(R))

For a matrix A = (aij)i=1,m,j=1,n, we define the norm of A by relation

|A| = max
i=1,m,j=1,n

|aij|.

For (x, y) ∈ X × Y we define

‖(x, y)‖ = max{‖x‖1, ‖y‖2}

where

‖x‖1 = sup
t∈(−∞,T ]

|x(t)|

‖y‖2 = sup
t∈[0,T ]

|y(t)|

Then (X × Y, ‖·, ·‖), (X, ‖ · ‖1), (Y, ‖ · ‖2) are the Banach spaces.

The Cauchy problem atached to (3) is :

(4)































N ′(t) = A(t)N(t) + ΛC(t) +
∞
∫

0

B(τ)N(t − τ) , t ∈ [0, T ]

C ′(t) = ΩI2N(t) − ΛtCt(t) , t ∈ [0, T ]

N(t) = ϕ(t) , t ∈ (−∞, 0]

C(0) = A

where:

(a) ϕ ∈ C((−∞, 0]);

(b) A ∈ M(m1+m2)×2

For the Cauchy problem attached to (3) we have the following results:

Theorem 2.1.We suppose that

max{L1, L2} < 1,

where:
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L1 =
T
∫

0

|A(s)|ds + |Λ|T + T
∞
∫

0

|B(τ)|dτ ;

L2 = T (|ΩI2| + |Λ|).

Then the Cauchy problem attached to equation(3) has a unique solution in

X × Y .

Proof:The equation (4) is equivalent with:

(5) N(t) =



























ϕ(0) +
t
∫

0

A(s)N(s)ds +
t
∫

0

ΛC(s)ds+

+
t
∫

0

∞
∫

0

B(τ)N(s − τ)dτds, t ∈ [0, T ]

ϕ(t), t ∈ (−∞, 0]

(6) C(t) = A +

t
∫

0

ΩI2N(s)ds − ΛtCt(s)ds,

for t ∈ [0, T ]. On X × Y we define the operator E by relation:

E : X × Y −→ X × Y,

E(N,C) = (E1(N,C), E2(N,C))

where

E1 : X × Y −→ X,

E1(N,C)(t) =the second part of relation (5)

and

E2 : X × Y −→ Y,
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E2(N,C)(t) =the second part of relation (6)

Let be t ∈ [0, T ]. Then

|E1(N,C)(t) − E1(N1, C1)(t)| ≤

≤ L1‖(N,C) − (N1, C1)‖

with

L1 =

T
∫

0

|A(s)|ds + |Λ|T + T

∞
∫

0

|B(τ)|dτ

For t ∈ (−∞, 0] we have that

|E1(N,C)(t) − E1(N1, C1)(t)| = 0

It follow that

‖E1(N,C) − E1(N1, C1)‖1 ≤ L1‖(N,C) − (N1, C1)‖

For t ∈ [0, T ]. Then

|E2(N,C)(t) − E2(N1, C1)(t)| ≤

≤ L2‖(N,C) − (N1, C1)‖

with

L2 = T (|ΩI2| + |Λ|)

It follow that

‖E2(N,C) − E2(N1, C1)‖2 ≤ L2‖(N,C) − (N1, C1)‖

and from here we obtain

‖E(N,C) − E(N1, C1)‖ ≤

≤ max{L1, L2}‖(N,C) − (N1, C1)‖
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From Banach principle we obtain the conclusion of Theorem.

Next we denote by R,S the following operators

R : X × Y −→ X,

S : X × Y −→ Y,

R(N,C)(t) = A(t)N(t) + ΛC(t) +

∞
∫

0

B(τ)N(t − τ)dτ

S(N,C)(t) = ΩI2N(t) − ΛtCt(t)

Then the equations (1) and (2) is equivalent with:

(7) N(t) =











N(0) +
t
∫

0

R(N,C)(s)ds , t ∈ [0, T ]

N(t) , t ∈ (−∞, 0]

(8) C(t) = C(0) +

t
∫

0

S(N,C)(s)ds, t ∈ [0, T ].

Theorem 2.2. We suppose that the conditions from Theorem 2.1 are sat-

isfies.Then

(a) the equations (7)+(8) has a infinity of solutions;

(b) If F1, F2 are the solutions set for the equation (7)+(8) with data

R1, S1, R2, S2, and in addition we suppose that there exists η1, η2 such

that

(9) |R1(N,C) − R2(N,C)| ≤ η1

(10) |R1(N,C) − S2(N,C)| ≤ η2

then

H(F1, F2) ≤ T max{η1, η2}max{c1, c2}
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Proof. a) On X × Y we define the operator E by relation:

E : X × Y −→ X × Y,

E(N,C) = (E1(N,C), E2(N,C))

where

E1 : X × Y −→ X,

E1(N,C)(t) =the second part of relation (7)

and

E2 : X × Y −→ Y,

E2(N,C)(t) =the second part of relation (8).

We have the following partition

X =
⋃

ϕ∈B((−∞,0],M2×2(R))

Xϕ

Y =
⋃

A∈M(m1+m2)×2(R)

XA,

where:

Xϕ = {N ∈ X | N |(−∞,0]= ϕ}

and

XA = {C ∈ Y | N(0) = A}.

Using the Theorem 2.1 we obtain that the operator E |Xϕ×XA
is Picard.

Using the Theorem 1.1 we have that the operator E is c- weakly Picard

operator with c = max{L1, L2}. In consequences result that the equation

(7)+(8) has a infinity of solutions.

b)

|E1
1(N,C)(t) − E2

1(N,C)(t)| ≤
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≤

t
∫

0

|R1(N,C)(s) − R2(N,C)(s)|ds ≤ η1T

|E1
2(N,C)(t) − E2

2(N,C)(t)| ≤

≤

t
∫

0

|S1(N,C)(s) − S2(N,C)(s)|ds ≤ η2T

It follow that

|E1(N,C) − E2(N,C)| ≤ T max{η1, η2}

From here via Theorem 1.2 we obtain the conclusion of Theorem.

3 Conclusion

From the above theorem, via Lema1.1 for ε = max{η1, η2}, we get the fo-

llowing physics interpretation: if perturbation characterized by the inequal-

ities (9) and (10) appear in our physics system, describable by multipoint

model, then for each solution (N1, C1) ∈ F1 here exists (N2, C2) ∈ F2 such

that

‖N1 − N2‖1 ≤ T max{η1, η2}{max{c1, c2} + 1}

‖C1 − C2‖2 ≤ T max{η1, η2}{max{c1, c2} + 1}

So for all t ∈ [0, T ] we have that

|N1(t) − N2(t)| ≤ T max{η1, η2}{max{c1, c2} + 1}

|C1(t) − C2(t)| ≤ T max{η1, η2}{max{c1, c2} + 1}
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