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A convexity property for an integral
operator on the class 5, (3)

Daniel Breaz

Abstract

In this paper we consider an integral operator F), (z) for analytic
functions f; (z) in the open unit disk U. The object of this paper is
to prove the convexity properties for the integral operator F,, (z) on

the class S, (3).
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1 Introduction

Let U = {z € C,|z| < 1} be the unit disc of the complex plane and de-
note by H (U), the class of the olomorphic functions in U. Consider A =
{feHU), f(z) =2+ asz® +azz® + ...,z € U} be the class of analytic func-

tions in U and S = {f € A: f is univalent in U}.
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Denote with K the class of convex functions in U, defined by

K:{feH(U):f(O):f’(O)—lzo,Re{ZJ{iﬂ(S)+1} >O,z€U}.

A function f € S is the convex function by the order a,,0 < o < 1 and

denote this class by K («) if f verify the inequality

Re {zf/”(iz)) + 1} >a,z €U

Consider the class S, (), was is introduced by F. Ronning in the paper
[3] and is defined by:

(1) feSB) = —1

o =7

where (3 is the real number with the property —1 < g < 1.

For f;(2) € A and a; > 0,7 € {1,...,n}, we define the integral operator

F, (2) given by

2) Fo(z) = /0 (flT(t)f _ (f”T(t))a dt.

This integral operator was first defined by Breaz and Breaz in [1]. It is
easy to see that F, (z) € A.

2 Main results

Theorem 1. Let o; > 0, fori € {1,...,n}, 5; is the real numbers with the
property —1 < B; < 1 and f; € S, (5;) forie {1,...,n}.
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If
(3) 0<iai(1_@.)g1

the integral operator F, is convex by the order 1+ > o; (8; — 1).
i=1

Proof. We calculate for F,, the derivatives of the first and second order.

From (2) we obtain:

Fe = (E2)7 (22T

and

=Y (F2) T (FEE (%

-

y

[
P

After the calculus we obtain that:

- () o (5)

These relation is equivalent with:

(4) B2 _ (

B (G 1YL, (1)

fi(z) =z fa(z) =z
Multiply the relation (4) with z we obtain:

L) N () s )
B Fe T4 (T ) =2eE -2

=1
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The relation (5) is equivalent with

F” Z Zf/ i@i+1-
=1

This relation is equlvalent Wlth:

2F) (2) - ( 2fi (2) ) - -
- +1= Q; : )+ D b — a; + 1.
CIERERP YL GAE I APILLRDY
We calculate the real part from both terms of the above equality and

obtain:

R(]f ) Z ( ) Za@@ Zal—l—l

Because f; € S, (8;) for i = {1,...,n}, we apply in the above relation the
inequality (1) and obtain:

o (1) - S

=1

—1‘+Zai(@—1)+1.

S
ACEE

Re ( ;:H ) Z 051 i

So, F,, is convex by the order Z a; (B — 1)+ 1.
i=1

Because «;

>0 for all i € {1,...,n}, obtain that

Theorem 2. Let o;,i € {1,...,n} the real positive numbers and f; € S, (3)
forie{l,...,n}.
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If

the integral operator F, is convex by the order (8 —1) > a; + 1.
i=1

Proof. Since

o= (L) ()

and
we obtain

2F () 1= zn:aizfz‘/ (2) zn:ozi-l— 1
Fi(2) = i) I

)
Thus we see, for f; (z) € S, (B), for all i € {1,...,n}

2F! (2) > - 2f1(2) ’ u
Re| —/—~+1| > o |2 -1 —-(f-1 a; + 1.
(R 1) ZelFg -1 -o-ng
Because «; J{ - 1‘ > 0 for all 7 € {1, ...,n}, obtain that

Re (Zg{((;)) + 1> > (B—1) i@ +1.

1 n
3 obtainthat 0 < (—1) > «

i=1

Because -1 < f < land0 < > a; <
i=1

+1 < 1. So F, is convex by the order (3 —1) > a; + 1.
i=1
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Remark 1.If 3 =0 and > a; =1 then
=1

Re (Zg(z) + 1) >0

so, F, 1s the convex function.

Corollary 1. Let v the real number, v > 0. We suppose that the functions

1
fesS,(B) and 0 < v < 15 In this conditions the integral operator

Fi(z)= / (@)Wdt is convex by the order (8 — 1)~y + 1.
0

Proof. In the Theorem 2, we consider n = 1.

Corollary 2. Let f € S, (8) and consider the integral operator of Alexan-

t
der, F (z) = / #dt. In this condition F' is convex by the order [5.
0

Proof. We have:

2B (2)  zf'(2)

. ZEN IO

From (6) we have:

zf'(2)
—f B 1‘+ﬁ > f.

So, the relation (7) imply that the Alexander operator is convex.

) Re (P00 1) e (L))
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