A convexity property for an integral operator on the class $S_{p}(\beta)$

Daniel Breaz

Abstract

In this paper we consider an integral operator $F_n(z)$ for analytic functions $f_i(z)$ in the open unit disk U. The object of this paper is to prove the convexity properties for the integral operator $F_n(z)$ on the class $S_p(\beta)$.

2000 Mathematical Subject Classification: 30C45

Key words and phrases: analytic functions, univalent functions, integral operator, convex functions.

1 Introduction

Let $U=\{z\in C, |z|<1\}$ be the unit disc of the complex plane and denote by H(U), the class of the olomorphic functions in U. Consider $A=\{f\in H(U), f(z)=z+a_2z^2+a_3z^3+..., z\in U\}$ be the class of analytic functions in U and $S=\{f\in A: f \text{ is univalent in } U\}$.

Denote with K the class of convex functions in U, defined by

$$K = \left\{ f \in H(U) : f(0) = f'(0) - 1 = 0, \mathbf{Re} \left\{ \frac{zf''(z)}{f'(z)} + 1 \right\} > 0, z \in U \right\}.$$

A function $f \in S$ is the convex function by the order $\alpha, 0 \le \alpha < 1$ and denote this class by $K(\alpha)$ if f verify the inequality

$$\operatorname{Re}\left\{ \frac{zf''(z)}{f'(z)} + 1 \right\} > \alpha, z \in U.$$

Consider the class $S_p(\beta)$, was is introduced by F. Ronning in the paper [3] and is defined by:

(1)
$$f \in S_p(\beta) \Leftrightarrow \left| \frac{zf'(z)}{f(z)} - 1 \right| \leq \mathbf{Re} \left\{ \frac{zf'(z)}{f(z)} - \beta \right\}$$

where β is the real number with the property $-1 \le \beta < 1$.

For $f_i(z) \in A$ and $\alpha_i > 0, i \in \{1, ..., n\}$, we define the integral operator $F_n(z)$ given by

(2)
$$F_n(z) = \int_0^z \left(\frac{f_1(t)}{t}\right)^{\alpha_1} \cdot \dots \cdot \left(\frac{f_n(t)}{t}\right)^{\alpha_n} dt.$$

This integral operator was first defined by Breaz and Breaz in [1]. It is easy to see that $F_n(z) \in A$.

2 Main results

Theorem 1. Let $\alpha_i > 0$, for $i \in \{1, ..., n\}$, β_i is the real numbers with the property $-1 \le \beta_i < 1$ and $f_i \in S_p(\beta_i)$ for $i \in \{1, ..., n\}$.

If

(3)
$$0 < \sum_{i=1}^{n} \alpha_i (1 - \beta_i) \le 1,$$

the integral operator F_n is convex by the order $1 + \sum_{i=1}^n \alpha_i (\beta_i - 1)$.

Proof. We calculate for F_n the derivatives of the first and second order.

From (2) we obtain:

$$F'_{n}(z) = \left(\frac{f_{1}(z)}{z}\right)^{\alpha_{1}} \cdot \dots \cdot \left(\frac{f_{n}(z)}{z}\right)^{\alpha_{n}}$$

and

$$F_n''(z) = \sum_{i=1}^n \alpha_i \left(\frac{f_i(z)}{z} \right)^{\alpha_i - 1} \left(\frac{z f_i'(z) - f_i(z)}{z f_i(z)} \right) \prod_{\substack{j=1\\j \neq i}}^n \left(\frac{f_j(z)}{z} \right)^{\alpha_j}.$$

After the calculus we obtain that:

$$\frac{F_n''(z)}{F_n'(z)} = \alpha_1 \left(\frac{z f_1'(z) - f_1(z)}{z f_1(z)} \right) + \dots + \alpha_n \left(\frac{z f_n'(z) - f_n(z)}{z f_n(z)} \right).$$

These relation is equivalent with:

(4)
$$\frac{F_n''(z)}{F_n'(z)} = \alpha_1 \left(\frac{f_1'(z)}{f_1(z)} - \frac{1}{z} \right) + \dots + \alpha_n \left(\frac{f_n'(z)}{f_n(z)} - \frac{1}{z} \right).$$

Multiply the relation (4) with z we obtain:

(5)
$$\frac{zF_n''(z)}{F_n'(z)} = \sum_{i=1}^n \alpha_i \left(\frac{zf_i'(z)}{f_i(z)} - 1 \right) = \sum_{i=1}^n \alpha_i \frac{zf_i'(z)}{f_i(z)} - \sum_{i=1}^n \alpha_i.$$

The relation (5) is equivalent with

$$\frac{zF_n''(z)}{F_n'(z)} + 1 = \sum_{i=1}^n \alpha_i \frac{zf_i'(z)}{f_i(z)} - \sum_{i=1}^n \alpha_i + 1.$$

This relation is equivalent with:

$$\frac{zF_n''(z)}{F_n'(z)} + 1 = \sum_{i=1}^n \alpha_i \left(\frac{zf_i'(z)}{f_i(z)} - \beta_i \right) + \sum_{i=1}^n \alpha_i \beta_i - \sum_{i=1}^n \alpha_i + 1.$$

We calculate the real part from both terms of the above equality and obtain:

$$\operatorname{Re}\left(\frac{zF_{n}''\left(z\right)}{F_{n}'\left(z\right)}+1\right)=\sum_{i=1}^{n}\alpha_{i}\operatorname{Re}\left(\frac{zf_{i}'\left(z\right)}{f_{i}\left(z\right)}-\beta_{i}\right)+\sum_{i=1}^{n}\alpha_{i}\beta_{i}-\sum_{i=1}^{n}\alpha_{i}+1.$$

Because $f_i \in S_p(\beta_i)$ for $i = \{1, ..., n\}$, we apply in the above relation the inequality (1) and obtain:

$$\operatorname{Re}\left(\frac{zF_{n}''(z)}{F_{n}'(z)}+1\right) > \sum_{i=1}^{n} \alpha_{i} \left|\frac{zf_{i}'(z)}{f_{i}(z)}-1\right| + \sum_{i=1}^{n} \alpha_{i} \left(\beta_{i}-1\right) + 1.$$

Because $\alpha_i \left| \frac{zf_i'(z)}{f_i(z)} - 1 \right| > 0$ for all $i \in \{1, ..., n\}$, obtain that

$$\operatorname{Re}\left(\frac{zF_{n}''(z)}{F_{n}'(z)}+1\right) > \sum_{i=1}^{n} \alpha_{i} \left(\beta_{i}-1\right)+1.$$

So, F_n is convex by the order $\sum_{i=1}^n \alpha_i (\beta_i - 1) + 1$.

Theorem 2. Let $\alpha_i, i \in \{1, ..., n\}$ the real positive numbers and $f_i \in S_p(\beta)$ for $i \in \{1, ..., n\}$.

If

$$0 < \sum_{i=1}^{n} \alpha_i \le \frac{1}{1-\beta},$$

the integral operator F_n is convex by the order $(\beta - 1) \sum_{i=1}^n \alpha_i + 1$.

Proof. Since

$$F'_{n}(z) = \left(\frac{f_{1}(z)}{z}\right)^{\alpha_{1}} \cdot \dots \cdot \left(\frac{f_{n}(z)}{z}\right)^{\alpha_{n}}$$

and

$$F_n''(z) = \sum_{i=1}^n \alpha_i \left(\frac{f_i(z)}{z} \right)^{\alpha_i - 1} \left(\frac{z f_i'(z) - f_i(z)}{z f_i(z)} \right) \prod_{\substack{j=1 \ j \neq i}}^n \left(\frac{f_j(z)}{z} \right)^{\alpha_j}$$

we obtain

$$\frac{zF_n''(z)}{F_n'(z)} + 1 = \sum_{i=1}^n \alpha_i \frac{zf_i'(z)}{f_i(z)} - \sum_{i=1}^n \alpha_i + 1.$$

Thus we see, for $f_i(z) \in S_p(\beta)$, for all $i \in \{1, ..., n\}$

$$\operatorname{Re}\left(\frac{zF_{n}''(z)}{F_{n}'(z)}+1\right) > \sum_{i=1}^{n} \alpha_{i} \left|\frac{zf_{i}'(z)}{f_{i}(z)}-1\right| - (\beta-1) \sum_{i=1}^{n} \alpha_{i}+1.$$

Because $\alpha_i \left| \frac{zf_i'(z)}{f_i(z)} - 1 \right| > 0$ for all $i \in \{1, ..., n\}$, obtain that

$$\operatorname{Re}\left(\frac{zF_n''(z)}{F_n'(z)}+1\right) > (\beta-1)\sum_{i=1}^n \alpha_i + 1.$$

Because $-1 \le \beta < 1$ and $0 < \sum_{i=1}^{n} \alpha_i \le \frac{1}{1-\beta}$ obtain that $0 \le (\beta - 1) \sum_{i=1}^{n} \alpha_i + 1 < 1$. So F_n is convex by the order $(\beta - 1) \sum_{i=1}^{n} \alpha_i + 1$.

Remark 1. If $\beta = 0$ and $\sum_{i=1}^{n} \alpha_i = 1$ then

$$\operatorname{Re}\left(\frac{zF_{n}''(z)}{F_{n}'(z)}+1\right)>0$$

so, F_n is the convex function.

Corollary 1. Let γ the real number, $\gamma > 0$. We suppose that the functions $f \in S_p(\beta)$ and $0 < \gamma \le \frac{1}{1-\beta}$. In this conditions the integral operator $F_1(z) = \int_0^z \left(\frac{f(t)}{t}\right)^{\gamma} dt$ is convex by the order $(\beta - 1)\gamma + 1$.

Proof. In the Theorem 2, we consider n = 1.

Corollary 2. Let $f \in S_p(\beta)$ and consider the integral operator of Alexander, $F(z) = \int_0^z \frac{f(t)}{t} dt$. In this condition F is convex by the order β .

Proof. We have:

(6)
$$\frac{zF''(z)}{F'(z)} = \frac{zf'(z)}{f(z)} - 1.$$

From (6) we have:

(7)
$$\operatorname{Re}\left(\frac{zF''(z)}{F'(z)}+1\right) = \operatorname{Re}\left(\frac{zf'(z)}{f(z)}-\beta\right)+\beta > k\left|\frac{zf'(z)}{f(z)}-1\right|+\beta > \beta.$$

So, the relation (7) imply that the Alexander operator is convex.

References

- D. Breaz, N. Breaz, Two integral operators, Studia Universitatis Babeş
 Bolyai, Mathematica, Cluj Napoca, No. 3-2002, pp. 13-21.
- [2] G. Murugusundaramoorthy, N. Maghesh, A new subclass of uniforlmly convex functions and a corresponding subclass of starlike functions with fixed second coefficient, Journal of Inequalities in Pure and Applied Mathematics, Vol. 5, Issue 4, 2005, pp. 1-10.
- [3] F. Ronning, *Uniformly convex functions*, Ann. Polon. Math., 57(1992), 165-175.

Department of Mathematics

Faculty of Science

University "1 Decembrie 1918" of Alba Iulia

Romania

Email addresses: dbreaz@uab.ro