Certain sufficient conditions for univalence ¹

Narayanasamy Seenivasagan and Daniel Breaz

Abstract

In this paper, we determined conditions on β, α_i and $f_i(z)$ so that the integral operator $\left\{\beta\int_0^z t^{\beta-1}\prod_{i=1}^n(\frac{f_i(t)}{t})^{\frac{1}{\alpha_i}}dt\right\}^{\frac{1}{\beta}}$ is univalent in the open unit disk for the two subclasses analytic functions.

2000 Mathematical Subject Classification: Primary 30C80, Secondary 30C45.

Key words: Integral operator, univalent functions, Schwartz's Lemma.

1 Introduction

Let \mathcal{A} be the class of all analytic functions f(z) defined in the open unit disk $U:=\{z\in\mathbb{C}:|z|<1\}$ and normalized by the conditions f(0)=0=f'(0)-1. Let \mathcal{S} be the subclass of \mathcal{A} consisting of univalent functions in U. Let \mathcal{A}_2 be the subclass of \mathcal{A} consisting of functions is of the form

(1.1)
$$f(z) = z + \sum_{k=3}^{\infty} a_k z^k.$$

¹Received 12 September, 2007 Accepted for publication (in revised form) 15 October, 2007

Let T be the univalent [6] subclass of A which satisfies

(1.2)
$$\left| \frac{z^2 f'(z)}{(f(z))^2} - 1 \right| < 1 \quad (z \in U).$$

Let T_2 be the subclass of T for which f''(0) = 0. Let $T_{2,\mu}$ be the subclass of T_2 consisting of functions is of the form (1.1) which satisfy

(1.3)
$$\left| \frac{z^2 f'(z)}{(f(z))^2} - 1 \right| \le \mu \quad (z \in U)$$

for some μ (0 < μ ≤ 1), and let us denote $T_{2,1} \equiv T_2$. Furthermore, for some real p with 0 < p ≤ 2 we define a subclass S(p) of A consisting of all function f(z) which satisfy

$$\left| \left(\frac{z}{f(z)} \right)'' \right| \le p \quad (z \in U).$$

Singh [5] has shown that if $f(z) \in S(p)$, then f(z) satisfies

(1.4)
$$\left| \frac{z^2 f'(z)}{(f(z))^2} - 1 \right| \le p|z|^2, \quad (z \in U).$$

Pascu [2] has proved the following theorem:

Theorem 1.1. [2, 3] Let $\beta \in \mathbb{C}$, $Re\beta \geq \gamma > 0$. If $f \in \mathcal{A}$ satisfies

$$\frac{1-|z|^{2\gamma}}{\gamma} \left| \frac{zf''(z)}{f'(z)} \right| \le 1, \quad (z \in U),$$

then the integral operator

$$F_{\beta}(z) = \left[\beta \int_{0}^{z} t^{\beta - 1} f'(t) dt\right]^{\frac{1}{\beta}}$$

is in $f \in S$.

Theorem 1.2. [4] Let $\alpha, \beta \in \mathbb{C}$ and $Re\beta \geq Re\alpha \geq \frac{3}{|\alpha|}$. Let $f \in \mathcal{A}$, that satisfies the condition

$$\left| \frac{z^2 f'(z)}{(f(z))^2} - 1 \right| < 1, \quad (z \in U)$$

and $|f(z)| \leq 1$, $(z \in U)$, then the integral operator

$$H_{\alpha,\beta}(z) = \left\{ \beta \int_0^z t^{\beta - 1} \left(\frac{f(t)}{t} \right)^{\frac{1}{\alpha}} dt \right\}^{\frac{1}{\beta}}$$

is in S.

Using Theorem 1.1 and Theorem 1.2, Breaz and Breaz [1] obtained the following Theorems.

Theorem 1.3. [1] Let $\alpha, \beta \in \mathbb{C}$ and $Re\beta \geq Re\alpha > \frac{3n}{|\alpha|}$. Let $f_i \in T_2$ and

(1.5)
$$f_i(z) = z + \sum_{k=3}^{\infty} a_k^i z^k$$

for all $i = 1, 2, \dots, n, n \in \mathbb{N}^* := \mathbb{N} \setminus \{0\}$ and if

$$|f_i(z)| \le 1, \quad (z \in U, \quad i = 1, 2, \dots, n),$$

then the integral operator

(1.6)
$$F_{\alpha,\beta}(z) = \left\{ \beta \int_0^z t^{\beta-1} \prod_{i=1}^n \left(\frac{f_i(t)}{t} \right)^{\frac{1}{\alpha}} dt \right\}^{\frac{1}{\beta}}$$

is in S.

Theorem 1.4. [1] Let $\alpha, \beta \in \mathbb{C}$ and $Re\beta \geq Re\alpha > \frac{n(\mu+2)}{|\alpha|}$. Let $f_i \in T_{2,\mu}$ defined by (1.5) for all $i = 1, 2, \dots, n$, $n \in \mathbb{N}^*$ and if $|f_i(z)| \leq 1$, $(z \in U, i = 1, 2, \dots, n)$, then the integral operator defined by (1.6) is in S.

Theorem 1.5. [1] Let $\alpha, \beta \in \mathbb{C}$ and $Re\beta \geq Re\alpha > \frac{n(p+2)}{|\alpha|}$. Let $f_i \in \mathcal{S}(p)$ defined by (1.5) for all $i = 1, 2, \dots, n$, $n \in \mathbb{N}^*$ and if $|f_i(z)| \leq 1$, $(z \in U, i = 1, 2, \dots, n)$, then the integral operator defined by (1.6) is in \mathcal{S} .

Theorem 1.2 is true even if $Re\beta \geq Re\alpha \geq 3/|\alpha|$ is replaced by the condition $Re\beta \geq 3/|\alpha|$. Similarly Theorem 1.3 is true even if $Re\beta \geq Re\alpha \geq$

 $3n/|\alpha|$ is replaced by the condition $Re\beta \geq 3n/|\alpha|$, Theorem 1.4 is true even if $Re\beta \geq Re\alpha \geq \frac{n(\mu+2)}{|\alpha|}$ is replaced by the condition $Re\beta \geq \frac{n(\mu+2)}{|\alpha|}$ and Theorem 1.5 is true even if $Re\beta \geq Re\alpha \geq \frac{n(p+2)}{|\alpha|}$ is replaced by the condition $Re\beta \geq \frac{n(p+2)}{|\alpha|}$.

In this paper we extend Theorems 1.3-1.5 and also obtain the sufficient condition for univalency of certain integral operator.

To prove our main results we need the following lemma:

Lemma 1.1. (Schwarz's Lemma) If the function w(z) is analytic in the unit desk U, w(0) = 0, and $|w(z)| \le 1$, for all $z \in U$, then

$$|w(z)| \le |z|, \quad (z \in U)$$

and equality holds only if $w(z) = \epsilon z$, where $|\epsilon| = 1$.

2 Sufficient Conditions For Univalence

For $f_i \in \mathcal{A}_2$ $(i = 1, 2, \dots, n)$ and $\alpha_1, \alpha_2, \dots, \alpha_n, \beta \in \mathbb{C}$, we define an integral operator by

(2.1)
$$F_{\alpha_1,\alpha_2,\cdots,\alpha_n,\beta}(z) = \left\{ \beta \int_0^z t^{\beta-1} \prod_{i=1}^n \left(\frac{f_i(t)}{t} \right)^{\frac{1}{\alpha_i}} dt \right\}^{\frac{1}{\beta}}.$$

When $\alpha_i = \alpha$ for all $i = 1, 2, \dots, n$, $F_{\alpha_1, \alpha_2, \dots, \alpha_n, \beta}(z)$ becomes the integral operator $F_{\alpha, \beta}(z)$ considered in Theorem 1.3.

Theorem 2.1. Let $M \geq 1$, $f_i \in T_{2,\mu_i}$ defined by (1.5), $\alpha_i, \beta \in \mathbb{C}$, $Re\beta \geq \gamma$ and

(2.2)
$$\gamma := \sum_{i=1}^{n} \frac{(1+\mu_i) M + 1}{|\alpha_i|} \quad (0 < \mu_i \le 1, \text{ for all } i = 1, 2, \dots, n, \ n \in \mathbb{N}^*).$$
If

$$|f_i(z)| \le M, \quad (z \in U, \quad i = 1, 2, \dots, n),$$

then the integral operator $F_{\alpha_1,\alpha_2,\cdots,\alpha_n,\beta}(z)$ defined by (2.1) is in S.

Proof. Define a function

$$h(z) = \int_0^z \prod_{i=1}^n \left(\frac{f_i(t)}{t}\right)^{\frac{1}{\alpha_i}} dt,$$

then we have h(0) = h'(0) - 1 = 0. Also a simple computation yields

$$h'(z) = \prod_{i=1}^{n} \left(\frac{f_i(z)}{z}\right)^{\frac{1}{\alpha_i}}$$

and

(2.3)
$$\frac{zh''(z)}{h'(z)} = \sum_{i=1}^{n} \frac{1}{\alpha_i} \left(\frac{zf_i'(z)}{f_i(z)} - 1 \right).$$

From equation (2.3), we have

$$\left| \frac{zh''(z)}{h'(z)} \right| \leq \sum_{i=1}^{n} \frac{1}{|\alpha_{i}|} \left(\left| \frac{zf'_{i}(z)}{f_{i}(z)} \right| + 1 \right)
= \sum_{i=1}^{n} \frac{1}{|\alpha_{i}|} \left(\left| \frac{z^{2}f'_{i}(z)}{(f_{i}(z))^{2}} \right| \left| \frac{f_{i}(z)}{z} \right| + 1 \right)$$
(2.4)

From the hypothesis, we have $|f_i(z)| \leq M$ $(z \in U, i = 1, 2, \dots, n)$, then by Schwarz Lemma, we obtain that

$$|f_i(z)| \le M|z| \quad (z \in U, \quad i = 1, 2, \dots, n).$$

We apply this result in inequality (2.4), we obtain

$$\left| \frac{zh''(z)}{h'(z)} \right| \leq \sum_{i=1}^{n} \frac{1}{|\alpha_{i}|} \left(\left| \frac{z^{2}f'_{i}(z)}{(f_{i}(z))^{2}} \right| M + 1 \right)
\leq \sum_{i=1}^{n} \frac{1}{|\alpha_{i}|} \left(\left| \frac{z^{2}f'_{i}(z)}{(f_{i}(z))^{2}} - 1 \right| M + M + 1 \right)
= \sum_{i=1}^{n} \frac{1}{|\alpha_{i}|} \left(\mu_{i}M + M + 1 \right) = \sum_{i=1}^{n} \frac{(1 + \mu_{i}) M + 1}{|\alpha_{i}|}.$$

Because of $f_i \in T_{2,\mu_i}$, (1.3) in (2.5) and in view of (2.2) we have

(2.6)
$$\left| \frac{zh''(z)}{h'(z)} \right| < \sum_{i=1}^{n} \frac{(1+\mu_i) M + 1}{|\alpha_i|} = \gamma.$$

Multiply (2.6) by

$$\frac{1-|z|^{2\gamma}}{\gamma},$$

we have

$$\frac{1 - |z|^{2\gamma}}{\gamma} \left| \frac{zh''(z)}{h'(z)} \right| \le 1 - |z|^{2\gamma} < 1 \quad (z \in U).$$

Since $Re\beta \ge \gamma > 0$ it follows from Theorem 1.1 that

$$\left[\beta \int_0^z t^{\beta-1} h'(t) dt\right]^{\frac{1}{\beta}} \in \mathbb{S}.$$

Since

$$\left[\beta \int_0^z t^{\beta-1} h'(t) dt\right]^{\frac{1}{\beta}} = \left[\beta \int_0^z t^{\beta-1} \prod_{i=1}^n \left(\frac{f_i(t)}{t}\right)^{\frac{1}{\alpha_i}} dt\right]^{\frac{1}{\beta}} = F_{\alpha_1,\alpha_2,\cdots,\alpha_n,\beta}(z),$$

the integral operator $F_{\alpha_1,\alpha_2,\cdots,\alpha_n,\beta}(z)$ defined by (2.1) is in S.

Remark 2.1. By taking M = 1, $\alpha_i = \alpha$, for all $i = 1, 2, \dots, n$, then Theorem 2.1 reduces to Theorem 1.4. By taking $\mu_i = \mu = 1$, $\alpha_i = \alpha$, for all $i = 1, 2, \dots, n$, then Theorem 2.1 reduces to Theorem 1.3.

Theorem 2.2. Let $M \geq 1$, $f_i \in S(p)$ defined by (1.5), $\alpha_i, \beta \in \mathbb{C}$, $Re\beta \geq \gamma_1$ and

(2.7)
$$\gamma_1 := \sum_{i=1}^n \frac{(1+p) M + 1}{|\alpha_i|} \quad (\text{ for all } i = 1, 2, \dots, n, \ n \in \mathbb{N}^*).$$

If

$$|f_i(z)| \le M \quad (z \in U, \quad i = 1, 2, \dots, n),$$

then the integral operator $F_{\alpha_1,\alpha_2,\cdots,\alpha_n,\beta}(z)$ defined by (2.1) is in S.

Proof. Define a function

$$h(z) = \int_0^z \prod_{i=1}^n \left(\frac{f_i(t)}{t}\right)^{\frac{1}{\alpha_i}} dt,$$

then we have h(0) = h'(0) - 1 = 0. Because of $f_i \in S(p)$, (1.4) in (2.5), in view of (2.7) we have

$$\left|\frac{zh''(z)}{h'(z)}\right| \leq \sum_{i=1}^{n} \frac{1+M+Mp|z|^2}{|\alpha_i|}$$

(2.9)
$$< \sum_{i=1}^{n} \frac{(1+p)M+1}{|\alpha_i|} = \gamma_1 \quad (z \in U).$$

Rest of the proof is similar to Theorem 2.1, then we omit the details.

Remark 2.2. By taking M = 1, $\alpha_i = \alpha$, for all $i = 1, 2, \dots, n$, then Theorem 2.2 reduces to Theorem 1.5.

Theorem 2.3. Let $\alpha_i, \beta \in \mathbb{C}$, $Re\beta \geq \gamma_2$ and

(2.10)
$$\gamma_2 := \sum_{i=1}^n \frac{\beta_i}{|\alpha_i|} \quad (0 < \beta_i \le 1, \text{ for all } i = 1, 2, \dots, n, n \in \mathbb{N}^*).$$

If $f_i \in A_2$ defined by (1.5) satisfy the conditions

(2.11)
$$\left| \frac{zf_i'(z)}{f_i(z)} - 1 \right| \le \beta_i \quad (0 < \beta_i \le 1, \ z \in U, \quad i = 1, 2, \dots, n),$$

then the integral operator $F_{\alpha_1,\alpha_2,\cdots,\alpha_n,\beta}(z)$ defined by (2.1) is in S.

Proof. From (2.3), we get

$$(2.12) \qquad \left| \frac{zh''(z)}{h'(z)} \right| = \left| \sum_{i=1}^{n} \frac{1}{\alpha_i} \left(\frac{zf_i'(z)}{f_i(z)} - 1 \right) \right| \le \sum_{i=1}^{n} \frac{1}{|\alpha_i|} \left| \frac{zf_i'(z)}{f_i(z)} - 1 \right|.$$

Substituting (2.11) in (2.12) and in view of (2.10) we have

(2.13)
$$\left| \frac{zh''(z)}{h'(z)} \right| < \sum_{i=1}^{n} \frac{\beta_i}{|\alpha_i|} = \gamma_2.$$

Rest of the proof is similar to Theorem 2.1, then we omit the details.

By taking $\beta_i = 1$ and $\alpha_i = \alpha$ (for all $i = 1, 2, \dots, n$) in Theorem 2.3, we obtained the following result.

Example 2.1. Let $\alpha, \beta \in \mathbb{C}$, $Re\beta \geq \frac{n}{|\alpha|}$. If $f_i \in \mathcal{A}_2$ defined by (1.5) satisfy the conditions

(2.14)
$$\left| \frac{zf_i'(z)}{f_i(z)} - 1 \right| \le 1 \quad (z \in U, \quad i = 1, 2, \dots, n),$$

then the integral operator $F_{\alpha,\beta}(z)$ defined by (1.6) is in S.

References

- [1] D. Breaz and N. Breaz, The univalent conditions for an integral operator on the classes S(p) and T_2 , Journal of Approximation Theory and Applications, Vol. 1, No.2, (2005), pp. 93–98.
- [2] N. N. Pascu, On a univalence criterion. II, in Itinerant seminar on functional equations, approximation and convexity (Cluj-Napoca, 1985), 153–154, Univ. "Babeş-Bolyai", Cluj.
- [3] N. N. Pascu, An improvement of Becker's univalence criterion, in Proceedings of the Commemorative Session: Simion Stoïlow (Braşov, 1987), 43–48, Univ. Braşov, Braşov.
- [4] V. Pescar, New criteria for univalence of certain integral operators, Demonstratio Math. 33(1) (2000), 51–54.

- [5] V. Singh, On a class of univalent functions, Int. J. Math. Math. Sci. 23(12) (2000), 855–857.
- [6] S. Ozaki and M. Nunokawa, *The Schwarzian derivative and univalent functions*, Proc. Amer. Math. Soc. 33 (1972), 392–394.

Narayanasamy Seenivasagan 2A Kamarajar Street Samatharmapuram, Theni 625531 India E-mail: vasagan2000@yahoo.co.in

Daniel Breaz

Department of Mathematics and Computer Science "1 Decembrie 1918" University of Alba Iulia 510009, str. N. Iorga, No. 11-13, Alba, Romania E-mail: dbreaz@uab.ro