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Torseforming Vector fields in a 3-dimensional Contact
Metric Manifold1
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Abstract

The object of the present paper is to study torseforming vector

field in a 3-dimensional contact metric manifold with Qϕ = ϕQ.

Here we prove that the torseforming vector field in a 3-dimensional

contact metric manifold with Qϕ = ϕQ is a concircular vector field.

2000 Mathematics Subject Classification: 53D15, 53C25.

Key words: 3-dimensional contact metric manifold, Concircular vector

field, Torseforming vector field.

1 Introduction

It is known that the set of metrics associated to the contact form η is

very large in contact metric manifolds (M2n+1, (ϕ, ξ, η, g)). Also one does

not know a complete classification, even if the structure is η-Enstein. And

also for n = 1, we know very little about the geometry of these manifolds

[6]. On the other hand if the structure is Sasakian, the Ricci operator

Q commutes with ϕ [3], i.e.,Qφ = φQ, but in general Qϕ 6= ϕQ. The

problem of the characterisation of contact metric manifold with Qϕ = ϕQ

is open for study. S. Tanno[9], defined a special family of contact metric

manifolds by the requirement that ξ belong to the k-nullity distribution of

g. The study of torseforming vector fields has a long history starting in 1925
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by the work of H.W.Brinkmann [5], P.A. Shirokov [8] and K.Yano [10,11].

These vector fields have been used in many areas of differential geometry,

for example in conformal mappings and transformations, geodesic, almost

geodesic and holomorphycally projective mapping and transformation, and

others. With the above background we plan to study the torsefroming

vector field in Contact metric manifiold with Qϕ = ϕQ and prove that they

are of concircular type.

2 Preliminaries and Known results

Let M = M2n+1 be a connected differentiable manifold with contact form

η,i.e., a tensor field of type (0,1) satisfying η ∧ (dη)n 6= 0. It is well known

that such a manifold admits a vector field ξ, called the characteristic vector

field such that η(ξ) = 1 and dη(ξ,X) = 0, for every X ∈ χ(M), where χ(M)

being the Lie algebra of the vector fields of M . Moreover, if M admits a

Riemannian metric g and a tensor field of type (1,1) such that [2]

ϕ2 = I + η ⊗ ξ, g(X, ξ) = η(X), ϕξ = 0, g(X,ϕY ) = dη(X,Y )(1)

we then say that (ϕ, ξ, η, g) is a contact matric structure. As a consequence

of these relation, one has

g(ϕX,ϕY ) = g(X,Y ) + η(X)η(Y ), ϕξ = 0, η · ϕ = 0.(2)

Denoting by L and R the Lie differentiation and the curvature tensor re-

spectively, we define the operators l and h by

lX = R(X, ξ)ξ, hX =
1

2
(LξX)(3)

The (1,1) tensors l and h and self-adjoint and satisfy

hξ = 0, lξ = 0, trh = trhϕ = 0.(4)

Since h anticommutes with ϕ, if λ is an eigenvalue of h it corresponds

to the eigenvalue −λ of ϕ. If ▽ denotes the Luri-Civita connection and Q

is the Ricci operator of g, then

▽xξ = −ϕX − ϕhX,(5)
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Tr.l = g(Qξ, ξ) = 2n − Trh2,(6)

(where Q is the Ricci operator and ▽ the Riemannian connection of g).

A contact manifold is said to be η-Enstein if

Q = aI + bη ⊗ ξ,(7)

where a, b are smooth function on M . The sectional curvature K(ξ,X) of

a plane section spanned by ξ and a vector X orthogonal to ξ is called a

ξ -section curvature, while the sectional curvature K(X,ϕX) is called a

ϕ-sectional curvature. The (k, µ)-nuillity distribution of a contact metric

manifold for the pair (k, µ) ∈ R2, is a distribution

N(k, µ) : P −→ NP (k, µ) = {Z ∈ TP M |R(X,Y )Z

= (kI+µh)[g(Y, Z)X−g(X,Z)Y ]}(8)

So, if the characteristic vector field ξ belongs to the (k, µ)-nullity distri-

bution we have,

R(X,Y )ξ = k(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ).(9)

By definition, the Weyl conformal curvature tensor C is given by

C(X,Y )Z = R(X,Y )Z − 1

n − 2
[g(Y, Z)QX − g(X,Z)QY

+g(QY,Z)X − g(QX,Z)Y ]

− r

(n − 1)(n − 2)
[g(Y, Z)X − g(X,Z)Y ](10)

where r is the scalar curvature[1].

For every 3-dimensional Riemannian manifold C = 0. So, for the curva-

ture tensor R of 3-dimensional Riemannian manifolds can be written the

following formula:

R(X,Y )Z = g(Y, Z)QX − g(X,Z)QY + g(QY,Z)X

−g(QX,Z)Y − r

2
[g(Y, Z)X − g(X,Z)Y ].(11)
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Using ϕQ = Qϕ, (6) and ϕξ = 0 we have that

Qξ = (Trl)ξ.(12)

From (11), using (3) and (12) we have for any X,

lX = QX + (Trl − S

2
)X + (

S

2
− 2Trl)η(X)ξ.(13)

For any X in a contact metric manifold with Qϕ = ϕQ we have[4]

lX = −1

2
(Trl)ϕ2X.(14)

Substituting (14) in (13) we get

QX =
1

2
(r − Trl)X +

1

2
(3Trl − r)η(X)ξ.(15)

From this it follows that

S(X,Y ) = g(QX, Y ) =
1

2
(r − Trl)g(X,Y ) +

1

2
(3Trl − r)η(X)η(Y ).(16)

Now, substituting (15) in (11) we obtain

R(X,Y )Z = {αg(Y, Z) + bη(Y )η(Z)}X

−{αg(X,Z) + bη(X)η(Z)}Y

+b{η(X)g(Y, Z) − η(Y )g(X,Z)}ξ(17)

where α = 1
2
− Trl.

A vector field ρ defined by g(X, ρ) = ω(X) for any vector field X is said to

be a torseforming vector field ([7],[10]) if

(▽Xω)(Y ) = kg(X,Y ) + π(X)ω(Y )(18)

where k is a non-zero scalar and π is a non-zero 1-form.
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3 Torseforming Vector field in a 3-Dimensional

Contact Metric manifold with Qϕ = ϕQ

We consider a unit torseforming vector field ρ̃ corresponding to the vector

field ρ. Suppose g(X, ρ̃) = T (X), then

T (X) =
ω(X)√

ω(ρ)
(19)

From (18) we get

(▽Xω)(Y )√
ω(ρ)

=
k√
ω(ρ)

g(X,Y ) +
π√
ω(ρ)

ω(Y ).(20)

Using (19) in the above, we obtain

(▽XT )(Y ) = λg(X,Y ) + π(X)T (Y ),(21)

where λ = k√
ω(ρ)

Y = (ρ̃) in (21), we obtain

(▽XT )(ρ̃) = λg(X, ρ̃) + π(X)T (ρ̃)(22)

As T (ρ̃) = g(ρ̃, ρ̃) = 1, equation (22) reduces to

π(X) = −λT (X)(23)

and hence (21) can be written in the form

(▽XT )(Y ) = λ[g(X,Y ) − T (X)T (Y )](24)

which implies T is closed.

Taking covariant differentiation of (24) and using Ricci identity we get

−T (R(X,Y )Z) = (Xλ)[g(Y, Z)−T (Y )T (Z)]− (Y λ)[g(X,Z)−T (X)T (Z)]

+λ2[g(Y, Z)T (X) − g(X,Z)T (Y )](25)
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Putting Z = ξ in (25) and using (16), we obtain

−T

[
Trl

2
(η(Y )X − η(X)Y )

]
= (Xλ) = [η(Y ) − T (Y )T (ξ)]

−(Y λ)[η(X) − T (X)T (ξ)]

+λ2[η(Y )T (X) − η(X)T (Y )](26)

Since T (ξ) = g(ξ, ρ̃) = η(ρ̃), (26) reduces to
[
λ2 +

Trl

2

]
[η(Y )T (X) − η(X)T (Y )] + [(Xλ)η(Y ) − (Y λ)η(X)]+

+η(ρ̃)[(Y λ)T (X) − (Xλ)T (Y )] = 0.(27)

Putting X = ρ̃ in (27) and as T (ρ̃) = g(ρ̃, ρ̃) = 1, we get
[
λ2 +

Trl

2
+ (ρ̃λ)

]
[η(Y ) − η(ρ̃)T (Y )] = 0.(28)

Thus we have the following

Lemma 3.1 If a 3-dimensional contact metric manifold M3 admits a torse-

forming vector field, then the following cases occur

[η(Y ) − η(ρ̃)T (Y )] = 0(29)
[
λ2 +

Trl

2
+ (ρ̃λ)

]
= 0(30)

We first consider the case where (29) holds good. From (29) we get

η(Y ) = η(ρ̃)T (Y ).(31)

Now Y = ξ implies 1 = (η(ρ̃))2 and thus η(ρ) = ±1. So

η(Y ) = ±T (Y ).(32)

Using (32) in (5) and then in view of (24), we have

−g(ϕX, Y ) − g(ϕhX, Y ) = ±λ[g(X,Y ) − T (X)T (Y )].(33)
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This implies that λ = ±C, where C is constant (say). Hence (23) reduces

to

π(X) = ±CT (X).(34)

Since T is closed, π is also closed. Hence we can state:

Lemma 3.2 The equation (29) implies that the vector field ρ̃ is a concir-

cular vector field

We next assume the case (30). Then

η(Y ) − η(ρ̃)T (Y ) 6= 0.(35)

From (25), we get

−T (QX) = (Xλ) + (ρ̃λ)T (X) + 2λ2T (X),(36)

where g(QX, Y ) = S(X,Y ).

Put X = ξ in (36) and using (12), we obtain

ξλ = −η(ρ̃)

[
λ2 +

Trl

2

]
.(37)

Putting Y = ξ in (27), in virtue of (37) and T (ξ) = η(ρ̃) we get

Xλ = −
[
λ2 +

Trl

2

]
T (X).(38)

From(23) it follows that

Y π(X) = −[(Y λ)T (X) + λ(Y T (X))].(39)

Using (38) in the above equation, we get

Y π(X) = −
[
−

{
λ2 +

Trl

2

}
T (Y )T (X) + λ[Y T (X)]

]
.(40)

Also

Xπ(Y ) = −
[
−

{
λ2 +

Trl

2

}
T (X)T (Y ) + λ[XT (Y )]

]
(41)
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and

π([X,Y ]) = −λT ([X,Y ]).(42)

From (40), (41) and (42), we obtain

dπ(X,Y ) = −λ[(dT )(X,Y )].(43)

Since T is closed, π is also closed. Thus we have

Lemma 3.3 The equation (32) implies that the vector field ρ̃ is a Concir-

cular vector field.

Thus from Lemma 3.2 and Lemma 3.3, we can state the following:

Theorem 3.1 A torseforming vector field in a 3-Dimensional Contact met-

ric manifold M3 with Qϕ = ϕQ is a Concircular vector field
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