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A Note on Heredity for Terraced Matrices!

H. Crawford Rhaly, Jr.

In Memory of Myrt Naylor Rhaly (1917-2006)

Abstract
A terraced matrix M is a lower triangular infinite matrix with
constant row segments. In this paper it is seen that when M is
a bounded linear operator on ¢2, hyponormality, compactness, and
noncompactness are inherited by the “immediate offspring” of M.
It is also shown that the Cesaro matrix cannot be the immediate

offspring of another hyponormal terraced matrix.
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1 Introduction

Assume that {a, } is a sequence of complex numbers such that the associated

ao 0 0
. a; ap 0 ... . .
terraced matriz M = is a bounded linear operator on
s Ao a9 .
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%; these matrices have been studied in [2] and [3]. We recall that M is said
to be hyponormal on % if ((M*, M|f, f} = ((M*M — MM?*)f, f) > 0 for all
f in 2. It seems natural to ask whether hyponormality is inherited by the

terraced matrix arising from any subsequence {a,, }. To see that the answer

1 00
11

. : 2 2 5

is no, we consider the case where M =C = | | | , the Cesaro
3 3 3

matrix. In [4, Corollary 5.1] it is seen that the terraced matrix associated

1
2n+1

the Cesaro matrix itself is known to be a hyponormal operator on % (see
[1]).

Consequently, we turn our attention to a more modest result and con-

with the subsequence { :n =0,1,2,....} is not hyponormal, although

sider hereditary properties of the terraced matrix arising from one special

aq 0 0
. az a3 0 ... ) )
subsequence; we will regard M’ = as the immediate
as asz as

offspring of M, for M’ is itself the terraced matrix that results from remov-
ing the first row and the first column from M. Note that M’ = U*MU

where U is the unilateral shift.

2 Main Result

Theorem 2.1. (a) M’ inherits from M the property of hyponormality.
(b) M is compact if and only if M’ is compact.

Proof. (a) We must show that [(M")*, M'| = (M')*M' — M'(M")* > 0.
Critical to the proof is the fact that (M')* M'= U*{(M*M)U}, which can
be verified by computing that both sides of the equation are equal to the



A Note on Heredity for Terraced Matrices 7

b by b3
I shaped matrix | 2 2 h b—f] 1% also, it
reverse-L-shaped matrix by by by where b, = ag|”; also, i

k=n
can be verified that

|a1|2 a1az  a103
’oAp @ras 2las” 2axa ...
M (M )* = 9 — (U*M){(UU*)(M*U)}

ajas Za_2a3 3 ‘ag‘

and that
2 |CL1 |2 2a1a_2 3a1a_3

2a_1a2 3|a2\2 3(12&_3

U*{(MM*)U} = = (U*M){I(M*U)}.

2CL_1(13 3CL_QCL3 4 ’CL3|2

Consequently, we have
[(M)*M'] = (M")*M" - M'(M')*
= UX{(M*M)U} - (UM ){(UU*)(M*U)}
=U{(M*M)U} - U{(MM*)U} + U{(MM*U}
- (UFM){UU) (M)}
= UM *M)U} - U(MM*)U} + (U*MN{I(M*U)}
- (UFM{(UU*)(M*U)}
= UX{[M* MU} + (M*U)*{(I - UU*)(M*U)}.
Since M is hyponormal (by hypothesis) and I — UU* > 0, we find that
(M), M) f )=
=([M*M]USUf) + (I -UU*)(M*U) f, (M*U) [)
> 04+0=0 for all f in ¢2.
This completes the proof of part (a).
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(b) We prove only one direction. Suppose M’ is compact. It follows
that UM'U* is also compact. Note that M — UM'U* has nonzero entries

only in the first column; these entries are precisely the terms of the sequence
o0

{a,}. Since M is bounded, we must have Z |an|” = || Meo||? < oo, where g
n=0

belongs to the standard orthonormal basis for £2; consequently, M —UM'U*
is a Hilbert-Schmidt operator on ¢? and is therefore compact. Thus M =
UM'U* + (M — UM'U*) is compact, since it is the sum of two compact

operators.

Corollary 2.1. Assume M" is the terraced matrix obtained by removing
the first k rows and the first k columns from M, for some fized positive
integer k > 1. (a) M" inherits from M the property of hyponormality. (b)
M is compact if and only if M" is compact.

3 Other Results

We note that normality (occurring when M commutes with M*) and quasi-
normality (occurring when M commutes with M*M) are also inherited
properties for terraced matrices, but those turn out to be trivialities. The

proofs are left to the reader.

Theorem 3.1. (a) If M is normal, then a, =0 for alln > 1 and M’ = 0.
(b) If M is quasinormal, then a, =0 for all n > 1 and M' = 0.

In closing, we consider a question about the most famous terraced ma-
trix, the Cesaro matrix C. Is C the immediate offspring of some other hy-
ponormal terraced matrix; that is, does there exist a hyponormal terraced

matrix A such that C = A’ = U*AU? The matrix A would have to be gen-
erated by {a,} with ag yet to be determined and a,, = % for n > 1. Then

1
L= lim (n+1)a, = lim nEl g From [3, Theorems 2.5 and 2.6] we

n——4o00 n—-+o0o n
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conclude that the spectrum is o(A) = {\: |A—1] <1} U{ao} and that A

[e.o]

1 2

. 2 o . . 2

cannot be hyponormal since g 1 lan|” = E 1 S =G 1 = L*. Thus we
n= n=

see that nonhyponormality is not inherited by the immediate offspring of a

terraced matrix.
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