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Self-Diffusion as an indicator of the
solid-fluid phase transition1

Eugen Grycko

Abstract

N hard disks are injected into a 2-dimensional container. The

initial velocities of the disks are generated according to a centered

normal distribution. The Newtonian dynamics is imposed on the

(thermodynamic) system. The average quadratic displacement of

the disks from their initial positions is sampled as function of time

for different densities of the system. It turns out that this function

depends qualitatively on whether the system is in the fluid/solid

phase; the average quadratic displacement indicates the self-diffusion

phenomenon in a fluid and performs a different behavior in a solid.

Based on computer experimental data the density of the solid-fluid

phase transition for hard disks is localized.

2000 Mathematics Subject Classification: 82B26, 76R50, 70F99.

Key words: molecular dynamics, Boltzmann system, graphical data

analysis, Linden interval.

1Received 21 January 2008

Accepted for publication (in revised form)22 January 2008

101



102 Eugen Grycko

1 Introduction

An important and conceptually simple microscopic model for a substance

is the Boltzmann system of moving molecules that are described by hard

spheres, or, in the 2-dimensional case, by hard disks. In this model the

molecules are subject to (thermal) motion and interact through collisions.

It is generally believed that the Boltzmann system undergoes a solid-liquid

phase transition (melting) at some critical density which is independent of

the temperature, cf. Bowen et al. (2006).

The analytical determination of the density of phase transition is to our

knowledge an unsolved problem. On the other hand, there are attempts

to determine the melting point by simulation studies, cf. Jaster (1998) and

Watanabe et al. (2004).

The aim of the present contribution is the discussion of a possibility for

detecting the phase transition in the 2-dimensional Boltzmann system by

checking whether the thermal motion of hard disks performs a diffusive be-

havior for different densities.

In Section 2 we describe the design of a computer experiment and explain

the notion of average quadratic displacement as a statistical tool for study-

ing the self-diffusion. In Section 3 we report the outcome of this long term

computer experiment whose statistical evaluation yields a small interval

covering the density of the solid-fluid phase transition. In Section 4 some

conclusions are drawn.
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2 The Arrangement of the Computer Exper-

iment

Let us consider a rectangular container

C := [−a1, a1] × [−a2, a2] ⊂ R
2

where

(2.1) a2 =

√
3

2
· a1.

We inject N = 1661 hard disks of mass m = N−1
A and radius r = 10−10m into

C where NA = 6.022 · 1026kg−1 denotes the modified Avogadro number.

In order to impose the temperature T = 300K on the (thermodynamic)

system we put

σ2 :=
kB · T

m

where kB = 1.38 · 10−23J/K denotes Boltzmann constant; we generate the

initial velocities v(1)(0), ..., v(N)(0) ∈ R
2 of the disks according to the normal

distribution N(0, σ2 · I2) with mean vector 0 and covariance matrix σ2 · I2

where I2 denotes the 2× 2-identity matrix. This initial state complies with

Maxwell hypothesis, cf. Moeschlin, Grycko (2006).

Newtonian dynamics is imposed on the system of N hard disks confined to

container C enabling us to determine the positions x(1)(t), ..., x(N)(t) ∈ C

of the disks at any time t ≥ 0.

For the analysis of the self-diffusion phenomenon in the system we intro-

duce the position index I(j) of sphere j at time t which is initially defined

according to

I(j) := (0, 0) ∈ Z
2;

if disk j is reflected at the wall {a1}×[−a2, a2] of container C at time t, then

I
(j)
1 is increased or decreased by 1 depending on whether I

(j)
1 is even or odd,
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respectively; if disk j is reflected at {−a1}× [−a2, a2], then I
(j)
1 is decreased

or increased by 1 depending on whether I
(j)
1 is even or odd, respectively. A

corresponding rule for changing the second component I
(j)
2 of I(j) is applied

if disk j is reflected at [−a1, a1] × {a2} or at [−a1, a1] × {−a2}.

If position x(j)(t) and index I(j) of disk j at time t are given, then its virtual

position y(j)(t) = (y
(j)
1 (t), y

(j)
2 (t)) ∈ R

2 at time t is defined by:

y
(j)
i (t) :=







x
(j)
i (t) + ai · I(j)

i if I
(j)
i is even

−x
(j)
i (t) + ai · I(j)

i if I
(j)
i is odd

for i = 1, 2, j = 1, . . . , N, t ≥ 0.

Put

(2.2) q(t) :=
1

N
·

N
∑

j=1

|y(j)(t) − x(j)(0)|2 (t ≥ 0)

where |.| denotes the Euclidean norm on R
2. q(t) expresses the average

quadratic displacement of the disks at time t from their initial positions.

Since we have used the virtual positions y(j)(t) and not x(j)(t) in (2.2), the

average quadratic displacement q(t) is not biased by boundary effects. An

analogous concept of quadratic displacement is applied in Grycko (2007) to

the estimation of the self-diffusion coefficient of a fluid.

In the course of the computer experiment imitating the (thermal) motion of

the disks, the temporal evolution of q(t) has been stored for different values

of the volume 4a1a2 of container C.
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3 The Outcome of the Computer Experiment

and its Evaluation

If N disks are confined to a container of volume 4a1a2, the number density

̺ of the thermodynamic system is given by

̺ =
N

4a1a2

;

the relative density ̺r is defined according to:

̺r :=
2
√

3 · r2 · N
4a1a2

where 2
√

3 · r2 is the inverse density of the close packing.

In the course of experimentation the edge lengths 2a1 and 2a2 of the con-

tainer have been varied such that the validity of (2.1) has been maintained;

the relative density ̺r has ranged between 0.5 and 1.0; for each choice of

relative density the dynamics has been run until 5 · 106 collisions between

the disks have occurred; the average quadratic displacement q(t) has been

stored as function of time. In Figure 1 the graph of the observed function

q is shown for the relative density ̺r = 0.6784; here q can be approximated

by a linear function,

q(t) ≈ D · t (t ≥ 0)

where parameter D can be interpreted as coefficient of self-diffusion, which

is typical for the fluid phase.
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Fig. 1: Average quadratic displacement as function

of time; ̺r = 0.6784.

Fig. 2: Average quadratic displacement as function

of time; ̺r = 0.9252.
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In Figure 2 the graph of q is shown for the relative density ̺r = 0.9252.

Here function q increases initially and starts to oscillate around a constant

value which corresponds to the oscillations of the micro-constituents around

their mechanical equilibrium positions; this phenomenon indicates the solid

phase.

Fig. 3: Average quadratic displacement as function

of time for different densities

In Figure 3 the average quadratic displacement as function of time is shown

for different densities; the numerical values of relative density are attached

to the three curves that indicate the solid-fluid phase transition. The visual

impression suggests that the relative density of phase transition ̺r lies in

the interval IL = [0.8773, 0.8927]; the index L has been settled on the

occasion of 65th birthday of Professor Hansjörg Linden from the University

of Hagen. The task of a sharper localization of ̺r would require a longer

observation of the average quadratic displacement for relative densities in

the critical range and the application of mathematically justified methods
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from Inferential Statistics.

4 Conclusions

In the course of the long term computer experiment the pressure has been

estimated in the range 0.5-1.0 of relative density by an application of a

pressure estimator introduced in Moeschlin, Grycko (2006), chap. 5. Figure

4 shows the isotherm (T = 300K) where the horizontal axis corresponds to

the (relative) density of the system and the vertical axis to the estimated

pressure; the diagram indicates that a localization of a phase transition

based on this isotherm should be difficult.

Fig. 4: Estimated pressure as function of density

.

On the other hand, the localization of the melting point based on the tem-

poral evolution of the average quadratic displacement of the molecules is



Self-Diffusion as an indicator of the... 109

straightforward, cf. Figure 3. The resulting Linden interval for ̺r is in a

good agreement with Jaster (1998) and Watanabe et al. (2004) who used

a Monte-Carlo method to study the dependence of an order parameter on

the density of the hard disk system and obtained similar melting points.
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