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On some integral classes of integral
operators'

Virgil Pescar

Abstract

Let A be the class of the functions f which are analytic in the unit
disk U = {z € C; |z| < 1} and f(0) = f/(0) — 1 = 0. The object of
the present paper is to derive univalence conditions of certain integral

operators for f(z) € A and f(z) has the form: f(z) =2+ Z apz®.
k=3
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1 Introduction

Let A be the class of the functions f(z) which are analytic in the unit disk
U={zeC:|z] <1} and f(0) = f'(0) — 1 =0.

We denote by S the class of the functions f(z) € A which are univalent
in U.

In this paper we consider the integral operators

(L.1) Fu(z) = / ) du

! Received 29 August 2007
Accepted for publication (in revised form) 4 January 2008

11



12 Virgil Pescar

(12) Haol2) = {

1

(13) L) = [ [ Wt ) ail

2 Preliminary Results

We need the following theorems.
Lemma 2.1. [1]. If f(2) € A satisfies

z ["(2)
f'(2)

<1, zeU

(2.1) (1—1z2%)

then f(z) € S.
Theorem 2.2. [3]. Let a be a complex number, Rea > 0 and f(z) € A. If

1— |Z|2Rea

Re«

2f"(2)
f'(2)

for all z € U, then for any complex number 3, Re 3 > Re« the function

<1

— Y

(2.2)

(2.3) &wzp/E“fwmr

0

is in the class S.
Theorem 2.3. [2 ]. If the function g(z) is reqular in U and |g(z)| <1 in
U, then for all £ € U and z € U the following inequalities hold:

(2.4)

)

g@tj@‘<§—z
1-g(2)9(6)| ~ 11—

(2.5 ()l < 290
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the equalities hold only in the case g(z) = eﬁgﬁ,

Remark 2.4. [2] For z =0, from inequality (2.4). We have

where |¢| =1 and |u| < 1.

9(&§) —9(0)
(2.6) L~ 300)9® < [¢
and, hence
€1+ 19(0)]

Considering g(0) = a and & = z,

2| + lal

(2.8) l9(2)] < T+ Jal[2]

forall z € U.

3 Main Results

Theorem 3.1. Let a be a complex number and f(z) € A,

flz) = z+Zakzk. If

k=3
(3.1) J}((ZZ)) <1, z€U
and
(3.2) la] <4
then the function
. F.(z)= )] d
(33) @)= [ 1

1s in the class S.

Proof. The function F,(z) is regular in U. Let us consider the function

(3-4) p(2) = ==
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where the constant || satisfies the inequality (3.2).

The function p(z) is regular in U. From (3.4) and (3.3) we obtain

o f”(Z)
3.9 p(2) = ———~.
& &= Tl 7
Using (3.1) and (3.5) we get
(3.6) ()| <1, z€U
and we have p(0) = 0.
By Remark 2.4 we have
(3.7) p(2) < 2], z€ U
From (3.4) and (3.7) we obtain
1 |Fl(2)
. — |2 <
(3.8) ol ‘Fc’u(z) <|z|, z€U
and
(3.9) (1 - |Z|2) W < ey gl&?l( (1 - |Z|2) El

1
Because Ha}f (1—12) |2)* = 7 from (3.9) and (3.2) we get
z|<
2F!(2)
F(2)

(67

(3.10) (1—12%) <1, zeU.

By Lemma 2.1 it results that the function F,(z) € S.
Theorem 3.2. Let v be a complex number and the function f(z) € A,
f(z)=2z+ Zakzk. If
k=3
f"(2)

(3.11) 5

<1, zeU
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and
(3.12) 9] < 4

then for any complexr number 3, Re 3 > 1 the function

B

(3.13) Haote) = {5 [ P o)

1s in the class S.

Proof. Let us consider the function

(3.14) g(z) = / @] du.

The function

140
.19 M =gy

where the constant || satisfies the inequality (3.12), is regular in U.
From (3.15) and (3.14) we obtain

_ 1 "®)

(3:10) PO

and using (3.11) we have
p()| <1, €U

Remark 2.4 applied to the function p(z) give

1 |g"(2)
3.17 — <l|z|, z€U
10 ol )] =7
and, hence
29" (%)
(3.18) (1= 1[2%) o) <l max (1= [2%) |21
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From (3.18) and (3.12) we obtain

29"(2)
/

(3.19) (1—1z2%) 7

’Sl, ze U

By Theorem 2.2 for Re a = 1, it results that Hs,(z) € S.
Theorem 3.3. Let 3 a complex number, Re 3 > 1 and f(z) € A,
f(z)=z+4azz®+ ..., @7&0, zeU. If

(3.20) “; ((j)) <4, €U
then the function
(3.21) Lot = [ [ 0 17

18 in the class S.

Proof. Let us consider the function

1)
which is regular in U. Remark 2.4 applied to the function g(z) give
L] f"(2)
22 - <
and, hence, we obtain
2f"(2)
3.23 1— |z <4max (1—1|2]*) |z]>, z€U
(3.23) ( Il)f,(z) < |z\<1( ERlE
: 2y 2 L
Since r|n|a>1< (1 —|2P) 2> = 7 from (3.23) we have
z|<
2f"(2)

3.24 1—|2]?) |2 <1, zeU.
(324) (-1

From (3.24) and Theorem 2.2 for Re o = 1, we obtain Fp(z) € S.
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