On some integral classes of integral operators¹

Virgil Pescar

Abstract

Let A be the class of the functions f which are analytic in the unit disk $U = \{z \in C; |z| < 1\}$ and f(0) = f'(0) - 1 = 0. The object of the present paper is to derive univalence conditions of certain integral operators for $f(z) \in A$ and f(z) has the form: $f(z) = z + \sum_{k=3}^{\infty} a_k z^k$.

2000 Mathematics Subject Classification: 30C45. Key words: Univalent, integral operator.

1 Introduction

Let A be the class of the functions f(z) which are analytic in the unit disk $U = \{z \in C : |z| < 1\}$ and f(0) = f'(0) - 1 = 0.

We denote by S the class of the functions $f(z) \in A$ which are univalent in U.

In this paper we consider the integral operators

(1.1)
$$F_{\alpha}(z) = \int_{0}^{z} \left[f'(u) \right]^{\alpha} du$$

Accepted for publication (in revised form) 4 January 2008

¹Received 29 August 2007

12 Virgil Pescar

(1.2)
$$H_{\beta,\gamma}(z) = \left\{ \beta \int_0^z u^{\beta-1} \left[f'(u) \right]^{\gamma} du \right\}^{\frac{1}{\beta}}$$

(1.3)
$$L_{\beta}(z) = \left[\beta \int_0^z u^{\beta - 1} \left[f'(u) \right] du \right]^{\frac{1}{\beta}}$$

2 Preliminary Results

We need the following theorems.

Lemma 2.1. [1]. If $f(z) \in A$ satisfies

(2.1)
$$(1 - |z|^2) \left| \frac{z f''(z)}{f'(z)} \right| \le 1, \ z \in U$$

then $f(z) \in S$.

Theorem 2.2. [3]. Let α be a complex number, $Re \alpha > 0$ and $f(z) \in A$. If

(2.2)
$$\frac{1 - |z|^{2Re\alpha}}{Re\alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le 1,$$

for all $z \in U$, then for any complex number β , $Re \beta \ge Re \alpha$ the function

(2.3)
$$F_{\beta}(z) = \left[\beta \int_0^z u^{\beta - 1} f'(u) du\right]^{\frac{1}{\beta}}$$

is in the class S.

Theorem 2.3. [2]. If the function g(z) is regular in U and |g(z)| < 1 in U, then for all $\xi \in U$ and $z \in U$ the following inequalities hold:

(2.4)
$$\left| \frac{g(\xi) - g(z)}{1 - \overline{g(z)}g(\xi)} \right| \le \left| \frac{\xi - z}{1 - \overline{z}\xi} \right|,$$

(2.5)
$$|g'(z)| \le \frac{1 - |g(z)|^2}{1 - |z|^2},$$

the equalities hold only in the case $g(z) = \frac{\epsilon(z+u)}{1+\overline{u}z}$, where $|\epsilon| = 1$ and |u| < 1. Remark 2.4. [2] For z = 0, from inequality (2.4). We have

(2.6)
$$\left| \frac{g(\xi) - g(0)}{1 - \overline{g(0)}g(\xi)} \right| \le |\xi|$$

and, hence

$$|g(\xi)| \le \frac{|\xi| + |g(0)|}{1 + |g(0)||\xi|}.$$

Considering g(0) = a and $\xi = z$,

$$(2.8) |g(z)| \le \frac{|z| + |a|}{1 + |a||z|}$$

for all $z \in U$.

3 Main Results

Theorem 3.1. Let α be a complex number and $f(z) \in A$,

$$f(z) = z + \sum_{k=3}^{\infty} a_k z^k$$
. If

$$\left| \frac{f''(z)}{f'(z)} \right| < 1, \ z \in U$$

and

$$(3.2) |\alpha| \le 4$$

then the function

(3.3)
$$F_{\alpha}(z) = \int_{0}^{z} \left[f'(u) \right]^{\alpha} du$$

is in the class S.

Proof. The function $F_{\alpha}(z)$ is regular in U. Let us consider the function

(3.4)
$$p(z) = \frac{1}{|\alpha|} \frac{F_{\alpha}''(z)}{F_{\alpha}'(z)}$$

14 Virgil Pescar

where the constant $|\alpha|$ satisfies the inequality (3.2).

The function p(z) is regular in U. From (3.4) and (3.3) we obtain

(3.5)
$$p(z) = \frac{\alpha}{|\alpha|} \frac{f''(z)}{f'(z)}.$$

Using (3.1) and (3.5) we get

$$(3.6) |p(z)| \le 1, \ z \in U$$

and we have p(0) = 0.

By Remark 2.4 we have

$$(3.7) |p(z)| \le |z|, \ z \in U.$$

From (3.4) and (3.7) we obtain

(3.8)
$$\frac{1}{|\alpha|} \left| \frac{F_{\alpha}''(z)}{F_{\alpha}'(z)} \right| \le |z|, \ z \in U$$

and

(3.9)
$$\left(1 - |z|^2\right) \left| \frac{z F_{\alpha}''(z)}{F_{\alpha}'(z)} \right| \le |\alpha| \max_{|z| < 1} \left(1 - |z|^2\right) |z|^2.$$

Because $\max_{|z|<1} (1-|z|^2) |z|^2 = \frac{1}{4}$, from (3.9) and (3.2) we get

(3.10)
$$(1 - |z|^2) \left| \frac{z F_{\alpha}''(z)}{F_{\alpha}'(z)} \right| \le 1, \ z \in U.$$

By Lemma 2.1 it results that the function $F_{\alpha}(z) \in S$.

Theorem 3.2. Let γ be a complex number and the function $f(z) \in A$,

$$f(z) = z + \sum_{k=3}^{\infty} a_k z^k. If$$

$$\left| \frac{f''(z)}{f'(z)} \right| < 1, \ z \in U$$

and

$$(3.12) |\gamma| \le 4$$

then for any complex number β , $Re \beta \geq 1$ the function

(3.13)
$$H_{\beta,\gamma}(z) = \left\{ \beta \int_0^z u^{\beta-1} \left[f'(u) \right]^{\gamma} du \right\}^{\frac{1}{\beta}}$$

is in the class S.

Proof. Let us consider the function

(3.14)
$$g(z) = \int_0^z [f'(u)]^{\gamma} du.$$

The function

(3.15)
$$p(z) = \frac{1}{|\gamma|} \frac{g''(z)}{g'(z)},$$

where the constant $|\gamma|$ satisfies the inequality (3.12), is regular in U. From (3.15) and (3.14) we obtain

(3.16)
$$p(z) = \frac{\gamma}{|\gamma|} \frac{f''(z)}{f'(z)}.$$

and using (3.11) we have

$$|p(z)| \le 1, \ z \in U$$

Remark 2.4 applied to the function p(z) give

(3.17)
$$\frac{1}{|\gamma|} \left| \frac{g''(z)}{g'(z)} \right| \le |z|, \ z \in U$$

and, hence

$$(3.18) \qquad \left(1 - |z|^2\right) \left| \frac{zg''(z)}{g'(z)} \right| \le |\gamma| \max_{|z| < 1} \left(1 - |z|^2\right) |z|^2.$$

16 Virgil Pescar

From (3.18) and (3.12) we obtain

(3.19)
$$\left(1 - |z|^2\right) \left| \frac{zg''(z)}{g'(z)} \right| \le 1, \ z \in U.$$

By Theorem 2.2 for $Re \alpha = 1$, it results that $H_{\beta,\gamma}(z) \in S$.

Theorem 3.3. Let β a complex number, $Re \beta \geq 1$ and $f(z) \in A$, $f(z) = z + a_3 z^3 + \dots$, $\frac{f(z)}{z} \neq 0$, $z \in U$. If

$$\left| \frac{f''(z)}{f'(z)} \right| \le 4, \ z \in U$$

then the function

(3.21)
$$L_{\beta}(z) = \left[\beta \int_{0}^{z} u^{\beta-1} \left[f'(u)\right] du\right]^{\frac{1}{\beta}}$$

is in the class S.

Proof. Let us consider the function

$$g(z) = \frac{1}{4} \frac{f''(z)}{f'(z)}$$

which is regular in U. Remark 2.4 applied to the function g(z) give

(3.22)
$$\frac{1}{4} \left| \frac{f''(z)}{f'(z)} \right| \le |z|, \ z \in U$$

and, hence, we obtain

$$(3.23) \qquad \left(1 - |z|^2\right) \left| \frac{zf''(z)}{f'(z)} \right| \le 4 \max_{|z| < 1} \left(1 - |z|^2\right) |z|^2, \ z \in U$$

Since $\max_{|z|<1} (1-|z|^2) |z|^2 = \frac{1}{4}$, from (3.23) we have

(3.24)
$$\left(1 - |z|^2\right) \left| \frac{zf''(z)}{f'(z)} \right| \le 1, \ z \in U.$$

From (3.24) and Theorem 2.2 for $Re \alpha = 1$, we obtain $F_{\beta}(z) \in S$.

References

- [1] J. Becker, Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Functionen, J. Reine Angew. Math., 255 (1972), 23-43.
- [2] Z. Nehari, *Conformal mapping*, Mc Graw-Hill Book Co., Inc., New York, Toronto, London, 1952.
- [3] N. N. Pascu, An improvement of Beckerş univalence criterion, Proceedings of the Commemorative Session Simion Stoilow (Braşov), 1987, University of Braşov, pp. 43-48.
- [4] V. Pescar, New univalence criteria, Transilvania University of Braşov, 2002.
- [5] C. Pommerenke, *Univalent functions*, Vanderhoeck Ruprecht in Göttingen, 1975.

"Transilvania" University of Braşov
Faculty of Mathematics and Computer Science
Department of Mathematics
2200 Braşov, Romania

E-mail: virgilpescar@unitbv.ro