Some new properties in q-Calculus¹ Daniel Florin Sofonea

Abstract

Our aim is to present new proofs of some results from q - Calculus. These results occur in many applications as physics, quantum theory, number theory, statistical mechanics, etc. Our proofs are based only on interpolation theory ([4]).

2000 Mathematics Subject Classification: 05A30 Key words: q-calculus

1 Introduction

1. In the following, for $q \in \mathbb{C} \setminus \{1\}$, let us denote $[\mathbf{n}]_{\mathbf{q}} = \frac{q^n - 1}{q - 1}$, and for $n \in \mathbb{N}$

(1)
$$[\mathbf{n}]_{\mathbf{q}}! = \begin{cases} 1 & \text{if } n = 0 \\ [1]_q[2]_q \dots [n]_q & \text{if } n = 1, 2, \dots, \end{cases},$$

(2)
$$\left[\begin{array}{c} \mathbf{n} \\ \mathbf{k} \end{array}\right]_{\mathbf{q}} = \frac{[n]_q!}{[k]_q![n-k]_q!} \text{ for } k \in \{0,1,\dots,n\}.$$

The numbers $\begin{bmatrix} \mathbf{n} \\ \mathbf{k} \end{bmatrix}_q$, $0 \le k \le n$, are called Gaussian - coefficients.

These coefficients satisfy the q - Pascal identities

Accepted for publication (in revised form) 6 December 2007

¹Received 18 August 2007

$$(3) \quad \begin{bmatrix} n+1 \\ k \end{bmatrix}_q = \begin{bmatrix} n \\ k \end{bmatrix}_q q^k + \begin{bmatrix} n \\ k-1 \end{bmatrix}_q = \begin{bmatrix} n \\ k \end{bmatrix}_q + \begin{bmatrix} n \\ k-1 \end{bmatrix}_q q^{n+1-k}$$

where $k \in \{1, 2, ..., n\}, 1 \le k \le n$.

Let q be an arbitrary complex number, $q \neq 1$, and $\mathcal{D} = \mathcal{D}_q \subseteq \mathbb{C}$ such that $x \in \mathcal{D}$ implies $qx \in \mathcal{D}$.

Definition 1.1 Any function $f: \mathcal{D}_q \to \mathbb{C}$ is called q - derivable, under restriction that if $0 \in \mathcal{D}_q$, there is f'(0).

Definition 1.2 A function $f: \mathcal{D}_q \to \mathbb{C}$ is q - derivable of order n, iff $0 \in \mathcal{D}_q$, implies that $f^{(n)}(0)$ exists.

For a function $f: \mathcal{D}_q \to \mathbb{C}$ which is q - derivable its q - derivative $D_q f$ was defined in 1908 by F.H. Jackson [3], in the following way

(4)
$$(\mathbf{D_q f})(\mathbf{x}) = \frac{f(x) - f(qx)}{(1 - q)x}, \quad q \in \mathbb{C} \setminus \{1\}.$$

For instance, $D_q(x^n) = [n]_q x^{n-1}$, and the linear operator $f \to D_q f$ satisfies (see [1])

(5)
$$(D_q f g)(x) = g(x)(D_q f)(x) + f(qx)(D_q g)(x).$$

$$\left(D_q \frac{f}{g}\right)(x) = \frac{g(x)(D_q f)(x) - f(x)(D_q g)(x)}{g(x)g(qx)}, \quad g(x)g(qx) \neq 0.$$

In the following by $[x_0, x_1, \ldots, x_n; f]$ we denote the divided differences at a system of distinct points x_0, x_1, \ldots, x_n . More precisely

(6)
$$= \sum_{k=0}^{n} \frac{[\mathbf{x_0}, \mathbf{x_1}, \dots, \mathbf{x_n}; \mathbf{f}] =}{f(x_k)}$$
$$= \sum_{k=0}^{n} \frac{f(x_k)}{(x_k - x_0) \cdot \dots \cdot (x_k - x_{k-1})(x_k - x_{k+1}) \cdot \dots \cdot (x_k - x_n)}.$$

2 Main theoretical results

We consider the points $x_k = q^k x$, k = 0, 1, ..., n, ($x_0 = x, x_1 = qx, ..., x_n = q^n x$). In this case, we have

Theorem 2.1 Let $q \in \mathbb{C} \setminus \{1\}$ and $f : \mathcal{D}_q \to \mathbb{C}$. Then on the knots $x_k = q^k x$, we have the representation

(7)
$$[\mathbf{x}, \mathbf{qx}, \dots, \mathbf{q^{n-1}x}, \mathbf{q^nx}; \mathbf{f}] = \frac{1}{q^{\frac{n(n-1)}{2}} [n]_q! x^n (q-1)^n} \sum_{k=0}^n (-1)^k \begin{bmatrix} n \\ k \end{bmatrix}_q q^{\frac{k(k-1)}{2}} f(q^{n-k}x).$$

Proof. For $0 \le j < k$ we have $x_k - x_j = xq^j(q^{k-j} - 1)$. Therefore $x_k - x_j = xq^j(q-1)[k-j]_q$, $0 \le j \le k-1$. When $k < j \le n$ $x_k - x_j = xq^k(1-q)[j-k]_q$. Further

$$\prod_{\substack{j=0\\j\neq k}}^{n} (x_k - x_j) = \prod_{j=0}^{k-1} (x_k - x_j) \cdot \prod_{j=k+1}^{n} (x_k - x_j) =$$

$$= x^{n} q^{\frac{k(k-1)}{2}} (q-1)^{k} [k]_{q} [k-1]_{q} \cdot \dots \cdot [1]_{q} \cdot q^{n-k} (1-q)^{k(n-k)} [1]_{q} \cdot \dots \cdot [n-k]_{q} = q^{n-k} (1-q)^{$$

$$\stackrel{(1)}{=} (-1)^k (1-q)^n x^n q^{k(n-k) + \frac{k(k-1)}{2}} [k]_q! [n-k]_q!.$$

Replacing the product in the equality (6) and using (2) we obtain

$$[x_0, x_1, \dots, x_n; f] = \frac{1}{[n]_q! x^n (q-1)^n} \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix}_q \frac{f(xq^k)}{(-1)^{n-k} q^{k(n-k)-\frac{k(k-1)}{2}}}.$$

This completes the proof.

If $D_q^0 = I$, $D_q^1 = D_q$, $D_q^k = D^q D_q^{k-1}$, a representation of operator D_q^n is given by

Theorem 2.2 Let $f: \mathcal{D}_q \to \mathbb{C}$ is q - derivable of order n, then

(8)
$$(D_q^n f)(x) = (q-1)^{-n} x^{-n} q^{-\binom{n}{2}} \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix}_q (-1)^k q^{\binom{k}{2}} f(q^{n-k} x).$$

Proof. Let us remark that

$$(D_q f)(x) = [x, qx; f] = [1]_q [x, qx; f],$$

and

$$(D_q^2 f)(x) = \frac{(D_q f)(x) - (D_q f)(qx)}{(1 - q)x} = \frac{qf(x) - (q+1)f(qx) + f(q^2 x)}{(1 - q)^2 qx^2} =$$

$$= \frac{(q+1)}{q(1-q)^2 x^2} \left[\frac{q}{q+1} f(x) - f(qx) + \frac{1}{q+1} f(q^2 x) \right] =$$

$$= (q+1) \left[\frac{f(x)}{x^2 (1-q)(1-q^2)} - \frac{f(qx)}{x^2 q(1-q)^2} + \frac{f(q^2 x)}{x^2 q(1-q)(1-q^2)} \right] =$$

$$= [2]_q [x, qx, q^2 x; f].$$

By induction, let us prove that $(D_q^n f)(x) = [n]_q[x, qx, \dots, q^n x; f]$. Assume that the formula is proved for n = m. Then it is also true for n = m + 1, because

$$(D_q^{m+1}f)(x) = (D_q(D_q^n f))(x) \stackrel{by}{=} \frac{(D_q^m f)(x) - (D_q^m f)(qx)}{(1-q)x} =$$

$$= \frac{[m]_q![x, qx, \dots, q^m x; f] - [m]_q![qx, q^2 x, \dots, q^{m+1} x; f]}{(1-q)x} =$$

$$= [m]_q! \frac{q^{m+1}x - x}{(1-q)x}[x, qx, \dots, q^{m+1}x; f] = [m+1]_q![x, qx, \dots, q^{m+1}x; f],$$

where we used formula

$$[x_0, x_1, \dots, x_n; \cdot] = \frac{[x_0, \dots, x_{n-1}; \cdot] - [x_1, \dots, x_n; \cdot]}{x_n - x_0}.$$

On the other hand

$$\begin{aligned} & [x, qx, \dots, q^{n-1}x, q^n x; f] = \\ &= \frac{1}{q^{\frac{n(n-1)}{2}} [n]_q! x^n (q-1)^n} \sum_{k=0}^n (-1)^k \begin{bmatrix} n \\ k \end{bmatrix}_q q^{\frac{k(k-1)}{2}} f(q^{n-k}x). \end{aligned}$$

Therefore

(9)
$$(D_q^n)(x) = [n]_q[x, qx, \dots, q^n x; f] =$$

$$= \frac{1}{q^{\binom{n}{2}} x^n (q-1)^n} \sum_{k=0}^n (-1)^k \begin{bmatrix} n \\ k \end{bmatrix}_q q^{\binom{k}{2}} f(q^{n-k} x).$$

Other proof may be performed in the following way. For n = 1 we find formula (4), that is the definition of q - difference operator. We presume that formula (8) is true for n = m. Then it is true for n = m + 1 too, because

$$(D_{q}^{m+1}f)(x) = D_{q}\left((q-1)^{-m}x^{-m}q^{-\binom{m}{2}}\sum_{k=0}^{m} \begin{bmatrix} m \\ k \end{bmatrix}_{q}(-1)^{k}q^{\binom{k}{2}}f(q^{m-k}x)\right) \stackrel{by}{=}^{(5)}$$

$$= (q-1)^{-m}q^{-\binom{m}{2}}\left(-\frac{q^{m}-1}{q-1}q^{-m}x^{-m-1}\sum_{k=0}^{m} \begin{bmatrix} m \\ k \end{bmatrix}_{q}(-1)^{k}q^{\binom{k}{2}}f(q^{m-k}x) + q^{-m}x^{-m}\sum_{k=0}^{m} \begin{bmatrix} m+1 \\ k \end{bmatrix}_{q}(-1)^{k}q^{\binom{k}{2}}f(q^{m+1-k}x)\right) \stackrel{by}{=}^{(3)}$$

$$= (q-1)^{-m-1}x^{-m-1}q^{-\binom{m}{2}}\sum_{k=0}^{m+1} \begin{bmatrix} m+1 \\ k \end{bmatrix}_{q}(-1)^{k}q^{\binom{k}{2}}f(q^{m+1-k}x).$$

Theorem 2.3 Let $q \in \mathbb{C} \setminus \{1\}$ and k be fixed in $\{2, 3, ..., p\}$, If $q^k = 1$ and $f : \mathcal{D}_q \to \mathbb{C}$ is q - derivable of order p, then for all x, $(D_q^p f)(x) = 0$.

Proof. From (9) we have

$$(D_q^p f)(x) = [p]_q![x_0, x_1, \dots, x_p; f],$$

where $x_j = q^j x$, j = 0, 1, ..., p. According to our hypothesis we have $q^k = 1$ for k fixed in $\{2, 3, ..., p\}$. Because

$$[p]_q! = \frac{(1-q)(1-q^2)\cdot\ldots\cdot(1-q^k)\cdot\ldots\cdot(1-q^p)}{(1-q)^p}$$

we have $[p]_q! = 0$, and the proposition is proved.

Theorem 2.4 Let $f: \mathcal{D}_q \to \mathbb{C}$ is q - derivable of order n. Then we have the following representation

(10)
$$f(q^n x) = \sum_{k=0}^n (q-1)^k x^k q^{\binom{k}{2}} \begin{bmatrix} n \\ k \end{bmatrix}_q (D_q^k f)(x).$$

Proof. Starting from Newton's formula we have:

$$f(z) = \sum_{k=0}^{n-1} (z - x_0)(z - x_1) \dots (z - x_{k-1})[x_0, x_1, \dots, x_k; f] + (z - x_0)(z - x_1) \dots (z - x_{n-1})[x_0, x_1, \dots, x_{n-1}, z; f].$$

Replacing $x_k = q^k x$, k = 0, 1, ..., n - 1 in the above formula and $z = q^n x$ and using formula (7) we obtain successively

$$f(q^{n}x) = \sum_{k=0}^{n-1} (q^{n}x - x)(q^{n}x - qx) \cdot \dots \cdot (q^{n}x - q^{k-1}) \frac{(D_{q}^{k}f)(x)}{(-1)^{k}[k]_{q}!} +$$

$$+ (q^{n}x - x)(q^{n}x - qx) \cdot \dots \cdot (q^{n}x - q^{n-1}) \frac{(D_{q}^{n}f)(x)}{(-1)^{n}[n]_{q}!} =$$

$$= \sum_{k=0}^{n} (q^{n}x - x)(q^{n}x - qx) \cdot \dots \cdot (q^{n}x - q^{k-1}) \frac{(D_{q}^{k}f)(x)}{(-1)^{k}[k]_{q}!} =$$

$$= \sum_{k=0}^{n} x^{k}q^{\binom{k}{2}} \frac{(-1)^{n} \frac{(q^{n} - 1) \cdot \dots \cdot (q - 1)}{(1 - q)^{n}}}{(1 - q)^{n}} (D_{q}^{k}f)(x) =$$

$$= \sum_{k=0}^{n} (q - 1)^{k}x^{k}q^{\binom{k}{2}} \frac{[n]_{q}!}{[n - q]_{q}![k]_{q}!} (D_{q}^{k}f)(x).$$

Corollary 2.5 Let $q \in \mathbb{C} \setminus \{1\}$ and $f : \mathcal{D}_q \to \mathbb{C}$ is q - derivable of order n. Then the following identity holds

(11)
$$f(x) = \sum_{k=0}^{n} (1-q)^k x^k q^{\binom{k+1}{2}} \begin{bmatrix} n \\ k \end{bmatrix}_q (D_q^k f) (q^{n-k} x)$$

Proof. We start with following equalities $(k \in \{0, 1, ..., n\})$:

$$[x]_{\frac{1}{q}} = \frac{q^{\frac{1}{x}} - 1}{\frac{1}{q} - 1} = q^{1-x}[x]_q,$$

$$[n]_{\frac{1}{q}}! = [1]_{\frac{1}{q}} \dots [n]_{\frac{1}{q}} =$$

$$= q^{1-1}[1]_q q^{1-2}[2]_q \dots q^{1-n}[n]_q = q^{n-(1+2+\dots+n)}[n]_q! = q^{-\binom{n}{2}}[n]_q!,$$

$$\begin{bmatrix} n \\ k \end{bmatrix}_{\frac{1}{q}} = \frac{[n]_{\frac{1}{q}}!}{[k]_{\frac{1}{q}}![n-k]_{\frac{1}{q}}!} = \frac{q^{-\binom{n}{2}}}{q^{-\binom{k}{2}}q^{-\binom{n-k}{2}}} \begin{bmatrix} n \\ k \end{bmatrix}_q,$$

On the other hand

$$(D_{\frac{1}{q}}f)(x) = \frac{f\left(\frac{x}{q}\right) - f(x)}{(1-q)x}q = q(D_q f)\left(\frac{x}{q}\right),$$

$$(D_{\frac{1}{q}}^2f)(x) = \frac{q\left[q(D_q f)\left(\frac{x}{q}\right) - q(D_q f)\left(\frac{x}{q^2}\right)\right]}{(q-1)x} = q^2(D_q^2 f)\left(\frac{x}{q^2}\right).$$

By induction, let us prove that

$$(D_{\frac{1}{q}}^n f)(x) = q^n (D_q^n f) \left(\frac{x}{q^n}\right).$$

Assume that the formula is proved for n = m. Then

$$(D_{\frac{1}{q}}^{m+1}f)(x) = (D_{\frac{1}{q}}(D_{\frac{1}{q}}^{m}f))(x) = \frac{(D_{\frac{1}{q}}^{m}f)(x) - (D_{\frac{1}{q}}^{m}f)\left(\frac{x}{q}\right)}{\left(1 - \frac{1}{q}\right)x} =$$

$$= \frac{q}{(q-1)x} \left[q^{m}(D_{q}^{m}f)\left(\frac{x}{q^{m}}\right) - q^{m}(D_{q}^{m}f)\left(\frac{x}{q^{m+1}}\right) \right] =$$

$$= q^{m+1}(D_{q}^{m+1}f)\left(\frac{x}{q^{m+1}}\right).$$

In (10) replacing $q \to \frac{1}{q}$

$$f\left(\frac{x}{q^n}\right) = \sum_{k=0}^n \left(\frac{1}{q} - 1\right)^k \frac{1}{q^{\binom{k}{2}}} \frac{q}{q^{-\binom{k}{2}}q^{-\binom{n-k}{2}}} \left[\begin{array}{c} n \\ k \end{array}\right]_q (D_{\frac{1}{q}}^k f)(x)$$

if in the above formula $x \rightsquigarrow q^n x$ we obtain

$$f(x) = \sum_{k=0}^{n} \frac{(1-q)^k}{q^k} q^{nk} x^k q^{-kn + \frac{k^2}{2} + \frac{k}{2}} \begin{bmatrix} n \\ k \end{bmatrix}_q \left(D_{\frac{1}{q}}^k f \right) (q^n x) =$$

$$= \sum_{k=0}^{n} (1-q)^k x^k q^{\binom{k}{2}} \begin{bmatrix} n \\ k \end{bmatrix}_q \left(D_{\frac{1}{q}}^k f \right) (q^n x)^{by} \stackrel{(12)}{=}$$

$$= \sum_{k=0}^{n} (1-q)^k x^k q^{\binom{k}{2}} q^k \begin{bmatrix} n \\ k \end{bmatrix}_q \left(D_q^k f \right) (q^{n-k} x).$$

Therefore we have obtained representation (11).

References

- [1] Exton H., q-hypergeometric functions and applications. Ellis. Horwood, 1983.
- [2] Gasper G. & Rahman M., Basic hypergeometric functions series. Cambridge (1990).
- [3] Jackson F.H., On q-functions and certain difference operator. Trans. Roy Soc. Edin. 46. (1908), 253-281.
- [4] Lupaş A., q-Analogues of Stancu operators., Mathematical Analysis and Aproximation Theory, Burg Verlag, 2002, 145-154.
- [5] Sofonea F., Numerical Analysis and q Calculus (I), Octogon, Vol. 11, No.1, April, 2003, 151-156.
- [6] Sofonea F., On a q Analogue of A. Lupaş Operators, Mathematical Analysis and Approximation Theory, RoGer2004, Mediamira, ISBN 973-713-078-2, 2005, 211-223.

University Lucian Blaga of Sibiu Department of Mathematics 5-7 Ratiu str, Sibiu, Romania E-mail: florin.sofonea@ulbsibiu.ro