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Remarks on the cyclic reduction method 1
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Abstract

A tridiagonal system of equations appears often by discretization

of differential equations. Several methods for solving such a system

are known. The aim of this paper is to compare, from computational

time point of view, the cyclic reduction method and an alternative,

which uses recurrence relations, by using parallel calculus.
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1 Introduction

A tridiagonal system of equations has the following form:
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or

(2) aixi−1 + bixi + cixi+1 = di, i = 1, n

with a1 = 0 and cn = 0.

Due to the fact that such a system appears very often in all sort of prob-

lems, there are many approaches for solving it, both with serial and parallel

computers. It is well known the Thomas algorithm, which generates the

solution after O(n) operations (see [2]), but also algorithms which gener-

ate logarithmical time of execution (see [1]), which use different parallel

techniques, as cyclic even-odd reduction.

In what follows, we take into account the Thomas algorithm and show

that its coefficient can be computed also in logarithmical time.

2 Thomas Algorithm

It is also called ”the tridiagonal matrix algorithm”.
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Starting with a system of type (1), the method has the following steps:

Step 1. Modify the coefficients of system (1) according with formulas:
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Step 2. The solution is obtained by back substitution:

xn = d′

n

xi = d′

i
− c′

i
xi+1, i = n − 1, n − 2, . . . , 1

It is clear that the solution of our system is obtained after O(n) opera-

tions.

3 The Cyclic Even-Odd Reduction Method

Another possibility for solving a system of type (1) is given by a technique

called Cyclic Even-Odd Reduction.

In the general case, considering a first order recurrence

(5) xi = ai + bixi−1

where ai and bi are known (i = 1, n) and x1, . . . , xn are to be calculated,

with x0 = α, given, we set a0 = α and ai = 0 for i < 0 and bi = 0 for i ≤ 0.

Then (5) will also hold for i ≤ 0, with xi = 0 for i < 0.
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In (3) we replace i by i − 1 and we get:

(6) xi = ai + bi(ai−1 + bi−1xi−2) = a
(1)
i

+ b
(1)
i

xi−2

Then, in (6) we replace i by i − 2 and we get
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(1)
i

+ b
(1)
i

(a
(1)
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(1)
i−2xi−4) = a

(2)
i

+ b
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i

xi−4

Continuing in this way, xi can be expressed successively in terms on xi−1,

xi−2, xi−4, xi−8, . . . and after at most k steps, where k = dlog2 ne, the index

i − 2k will be negative or zero, and therefore b
(k)

i−2k = 0, then xi = a
(k)

i−2k .

How can we apply this method to solve a system of type (1)? Like in

[3], consider the three equations involving xi:

ai−1xi−2+ bi−1xi−1+ ci−1xi = yi−1(8)

aixi−1+ bixi + cixi+1 = yi(9)

ai+1xi + bi+1xi+1 + ci+1xi+2 = yi+1(10)

By subtracting suitable multiples of equations (8) and (10) from (9), we

can obtain an equation of the form

(11) a
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(1)
i

By similar manipulation of three equations of the form (11) we obtain
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and so on. Setting xi = ai = ci = yi = 0 and bi = 1 when i is outside the

relevant range, after k = dlog2 ne steps, we reach the equation:

(13) bk

i
xi = y

(k)
i

giving the value xi.
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4 Thomas Algorithm revisited

Let’s consider, again, the system (1) and the determinant of the matrix

(14)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b1 c1 0

a2 b2 c2

a3 b3
. . .

. . .
. . .

. . .

. . .
. . . cn−1

0 an bn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Then

det1 = b1

det2 =

∣

∣

∣

∣

∣

∣

b1 c1

a2 b2

∣

∣

∣

∣

∣

∣

= b2b1 − a2c1 = b2 det1 −α1 det0,

for det0 = 1 and α1 = a2c1

det3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

b1 c1 0

a2 b2 c2

0 a3 b3

∣

∣

∣

∣

∣

∣

∣

∣

∣

= b3 det2 −β2 det1 with β2 = a3c2b1

...

and so on.

Then

(15) detn = bn detn−1 −αn detn−1,

with αn apriori computed.
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Having these observations in mind, we may observe that formulas (3)

becomes:
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Formula (15) is a linear recurrence with two terms which can be perform,

in parallel, in the following way:
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So, at every moment of time, we may compute det i, i = 1, n, according

with relation (17). The computation takes place only at matricial level, in

the following way: if we denote

Mi =





bi αi

1 0



 , i = 1, n,

the matrix multiplication in (17) may be performed on a binary tree network

with 2n − 1 processors:
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Mn Mn−1 Mn−2 Mn−3 . . . M2 M1

�� �� ��

MnMn−1 Mn−2Mn−3 M2M1

� � . . . �

. . .

��

MnMn−1 . . . M1

After dlog2 ne parallel steps, the final product will be in the root. The

parallel technique used here is called ”double recursive technique” (see [3]).

Concerning the coefficients d′

i
, i = 1, n in (4), a similar result may be

obtained, by considering the following determinants:
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Then
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5 Conclusions

In this paper, we give an anternative to the cyclic even-odd reduction scheme

for solving a tridiagonal system of equations, by using Thomas algorithm

and the double recursive technique. Our approach generates also an execu-

tion time of order O(log2 n).
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