The degree of approximation by Bernstein operators in the knots ¹

Radu Păltănea

Abstract

We prove the inequality $\left|B_n\left(f,\frac{k}{n}\right)-f\left(\frac{k}{n}\right)\right| \leq \frac{7}{8}\omega_2\left(f,\frac{1}{\sqrt{n}}\right)$, where B_n is the Bernstein operator of order $n\geq 1$, the integer k is such that $0\leq k\leq n$ and ω_2 denotes the usual second order modulus. Also, we give a better estimate of approximation for the point $\frac{1}{2}$.

2000 Mathematics Subject Classification: 41A10, 41A36, 41A25 Key words and phrases: Bernstein operators, second order modulus

1 Introduction. Main results

Denote by B[0,1], the space of bounded real functions on the interval [0,1], with the sup-norm: $\|\cdot\|$ and denote by C[0,1] the subspace of continuous

Accepted for publication (in revised form) 5 December, 2009

¹Received 10 October, 2009

functions. We denote the monomial functions $e_j(t) = t^j$, j = 0, 1, 2, ... and let Π_1 the set of linear functions.

The Bernstein operators $B_n: B[0,1] \to \mathbf{R}^{[0,1]}, n \in \mathbf{N}$ are given by:

(1)
$$B_n(f,x) = \sum_{j=0}^n p_{n,j}(x) \cdot f\left(\frac{j}{n}\right), \quad f \in B[0,1], \ x \in [0,1],$$

(2)
$$p_{n,j}(x) = \binom{n}{j} x^j (1-x)^{n-j}.$$

We express the order of approximation in terms of the second order of continuity, given by:

$$\omega_2(f,h) = \sup\{|f(x+\rho) - 2f(x) + f(x-\rho)|, \ x \pm \rho \in [0,1],$$

$$0 < \rho \le h\}, \text{ for } f \in B[0,1], \ h > 0.$$

The global order of approximation is given, in the following theorem, see [4]:

Theorem A For any $n \in \mathbb{N}$ we have

(3)
$$\sup_{f \in B[0,1] \setminus \Pi_1} \frac{\|B_n(f) - f\|}{\omega_2\left(f, \frac{1}{\sqrt{n}}\right)} = \sup_{f \in C[0,1] \setminus \Pi_1} \frac{\|B_n(f) - f\|}{\omega_2\left(f, \frac{1}{\sqrt{n}}\right)} = 1.$$

Moreover, if we take into account the result given in [3], we obtain **Theorem B** For any irrational number $x \in (0, 1)$,

$$\sup_{n \in \mathbb{N}} \sup_{f \in C[0,1] \setminus \Pi_1} \frac{|B_n(f,x) - f(x)|}{\omega_2\left(f, \frac{1}{\sqrt{n}}\right)} = \sup_{n \in \mathbb{N}} \sup_{f \in B[0,1] \setminus \Pi_1} \frac{|B_n(f,x) - f(x)|}{\omega_2\left(f, \frac{1}{\sqrt{n}}\right)} = 1.$$

On the other hand, for the degree of approximation in the knots, the following result of Gonska and Zhou, [1] is known:

Theorem C Let

$$r = \frac{1 + \sum_{j=2}^{\infty} j^2 e^{-2(j-1)^2}}{2 + 2\sum_{j=2}^{\infty} e^{-2(j-1)^2}} \approx 0.68.$$

Then for any $\frac{1}{2} \le a < 1$, $\varepsilon > 0$, there is an $N(a, \varepsilon) \in \mathbf{N}$ such that for all $n \ge N(a, \varepsilon)$, $f \in C[0, 1]$,

(5)
$$\sup_{1-a \le \frac{k}{n} \le a} \left| B_n \left(f, \frac{k}{n} \right) - f \left(\frac{k}{n} \right) \right| \le (r+\varepsilon) \cdot \omega_2 \left(f, \frac{1}{\sqrt{n}} \right),$$

i.e., for any $\frac{1}{2} \le a < 1$ we have

(6)
$$\limsup_{n \to \infty} \sup_{1-a \le \frac{k}{n} \le a} \sup_{f \in C[0,1] \setminus \Pi_1} \frac{\left| B_n\left(f, \frac{k}{n}\right) - f\left(\frac{k}{n}\right) \right|}{\omega_2\left(f, \frac{1}{\sqrt{n}}\right)} \le r.$$

In connection to Theorem C, we show in this paper that there exists a constant C < 1 such that the inequality $\left| B_n \left(f, \frac{k}{n} \right) - f \left(\frac{k}{n} \right) \right| \le C \dot{\omega}_2 \left(f, \frac{1}{\sqrt{n}} \right)$ holds uniformly for all $n \in \mathbb{N}$ and all the knots $\frac{k}{n}$, $0 \le k \le n$. More exactly, we have

Theorem 1 The following inequality

(7)
$$\left| B_n \left(f, \frac{k}{n} \right) - f \left(\frac{k}{n} \right) \right| \le \frac{7}{8} \omega_2 \left(f, \frac{1}{\sqrt{n}} \right),$$

for all $n \in \mathbb{N}$, $0 \le k \le n$, $f \in B[0,1]$.

As regard to the estimate in the point $\frac{1}{2}$ we prove:

Theorem 2 We have

(8)
$$\limsup_{n \to \infty} \sup_{f \in B[0,1] \setminus \Pi_1} \frac{\left| B_n\left(f, \frac{1}{2}\right) - f\left(\frac{1}{2}\right) \right|}{\omega_2\left(f, \frac{1}{\sqrt{n}}\right)} \le \frac{5}{8} + \frac{1}{2\sqrt{2\pi}e^2} \le 0.652.$$

Note that the constant given in Theorem 2 is smaller than the constant r in Theorem C.

2 Auxiliary results

Lemma 1 We have

(9)
$$\frac{1}{2} \cdot p_{n,k-j} \left(\frac{k}{n} \right) \le p_{n,k+j} \left(\frac{k}{n} \right) \le p_{n,k-j} \left(\frac{k}{n} \right),$$

for all integers $k \ge 1$, $n \ge 2k$, $0 \le j \le k$.

Proof. For the integers $k \ge 1$, $n \ge 2k$, $0 \le j \le k$, denote

$$U_j^{n,k} = \frac{p_{n,k+j}\left(\frac{k}{n}\right)}{p_{n,k-j}\left(\frac{k}{n}\right)}.$$

We have

$$U_j^{n,k} = \frac{(k-j)!(n-k+j)!}{(k+j)!(n-k-j)!} \left(\frac{k}{n-k}\right)^{2j}.$$

Then for $k \ge 1$, $n \ge 2k$, $0 \le j < k$ it follows

$$\frac{U_{j+1}^{n,k}}{U_j^{n,k}} = \frac{(n-k+j+1)(k-j)}{(n-k-j)(k+j+1)} \left(\frac{k}{n-k}\right)^2
= \frac{(n-k)k + (2k-n)j - j(j+1)}{(n-k)k + (n-2k)j - j(j+1)} \left(\frac{k}{n-k}\right)^2
\leq 1.$$

Since $U_0^{n,k} = 1$, for $k \ge 1$, $n \ge 2k$, we obtain

(10)
$$U_j^{n,k} \le 1$$
, for $k \ge 1$, $n \ge 2k$, $0 \le j \le k$.

On other hand, in order to prove

(11)
$$U_j^{n,k} \ge \frac{1}{2}$$
, for $k \ge 1$, $n \ge 2k$, $0 \le j \le k$,

it is sufficient to show that $U_k^{n,k} \geq \frac{1}{2}$, for $k \geq 1$, $n \geq 2k$. Put m = n - k. Then $k \leq m$. Denote $a_m^k = U_k^{m+k,k}$. It remains to show that

(12)
$$a_m^k \ge \frac{1}{2}$$
, for $1 \le k \le m$.

We have

$$a_m^k = \frac{(k+m)!}{(2k)!(m-k)!} \left(\frac{k}{m}\right)^{2k}.$$

Consequently

$$\frac{a_{m+1}^k}{a_m^k} = \frac{k+m+1}{m-k+1} \left(\frac{m}{m+1}\right)^{2k}.$$

If we consider the function $\varphi_k(m) = \frac{k+m+1}{m-k+1} \left(\frac{m}{m+1}\right)^{2k}$, $m \in [k, \infty)$, where $k \ge 1$, we find

$$\frac{\mathrm{d}}{\mathrm{d}m}\varphi_k(m) = \frac{2k}{(m-k+1)^2} \cdot \frac{m^{2k-1}}{(m+1)^{2k+1}} \cdot (m-k^2+1).$$

Also,

$$\lim_{m \to \infty} \varphi_k(m) = 1.$$

Then one of the following cases is true:

- i) $\varphi_k(m) \leq 1$, for $m \in [k, \infty)$;
- ii) There is $m_0 \in (k, k^2 1)$ such that $\varphi_k(m) \ge 1$, for $m \in [k, m_0]$ and $\varphi_k(m) \le 1$, for $m \in [m_0, \infty)$.

Consequently, we have:

$$\inf_{m\geq k} a_m^k = \min\left\{a_k^k, \ \lim_{m\to\infty} a_m^k\right\} = \min\left\{1, \ \frac{k^{2k}}{(2k)!}\right\}.$$

Finally, in order to show (12) it suffices to show that

$$\frac{(2k)!}{k^{2k}} \le 2, \ k \in \mathbb{N}, \ k \ge 1.$$

This inequality is obvious for k = 1. Using the Stirling formula, we obtain for $k \ge 1$:

$$\frac{(2k)!}{k^{2k}} \le 2\sqrt{k\pi} \left(\frac{2}{e}\right)^{2k} e^{\frac{1}{24}}.$$

Denoting $t_k = 2\sqrt{k\pi} \left(\frac{2}{e}\right)^{2k} e^{\frac{1}{24}}$, we obtain

$$\frac{t_{k+1}}{t_k} = \sqrt{\frac{k+1}{k}} \left(\frac{2}{e}\right)^2 \le \sqrt{2} \left(\frac{2}{e}\right)^2 < 1.$$

So that, for $k \geq 2$,

$$\frac{(2k)!}{k^{2k}} \le t_k < t_2 = 2\sqrt{2\pi} \left(\frac{2}{e}\right)^4 e^{\frac{1}{24}} = 1.42 \dots < 2.$$

The proof is finished.

Lemma 2 (Sikkema [7]) For any $x \in [0,1]$ and any integers $1 \le s \le n$, we have:

(13)
$$\sum_{i=s}^{n} p_{n,i}(x) \left(\frac{i}{n} - x \right) = \binom{n-1}{s-1} x^{s} (1-x)^{n+1-s}.$$

For any $a \in \mathbb{R}$, denote by [a], the integer part of a.

Lemma 3 Let the integers k, n, such that $1 \le k \le n/2$. Put $m = \min\{k, \lceil \sqrt{n} \rceil\}$. We have

(14)
$$\sum_{j=1}^{m} p_{n,k+j} \left(\frac{k}{n}\right) + \frac{1}{2} \cdot p_{n,k} \left(\frac{k}{n}\right) > \frac{1}{4}.$$

Proof. First we prove the relation

(15)
$$\sum_{i=k-m}^{k+m} p_{n,i}\left(\frac{k}{n}\right) \ge \frac{3}{4}.$$

We consider two cases.

Case 1: $m = [\sqrt{n}]$. We have

$$\sum_{|i-k|>\sqrt{n}} p_{n,i}\left(\frac{k}{n}\right) \leq n \sum_{|i-k|>\sqrt{n}} p_{n,i}\left(\frac{k}{n}\right) \left(\frac{i-k}{n}\right)^2$$

$$\leq n \sum_{i=0}^n p_{n,i}\left(\frac{k}{n}\right) \left(\frac{i-k}{n}\right)^2 = \frac{k(n-k)}{n^2} \leq \frac{1}{4}.$$

Therefore relation (15) is true.

Case 2: m = k. Using the following identity (13) we obtain

$$\sum_{i=2k+1}^{n} p_{n,i} \left(\frac{k}{n} \right) \leq \frac{n}{k} \sum_{i=2k+1}^{n} p_{n,i} \left(\frac{k}{n} \right) \left(\frac{i}{n} - \frac{k}{n} \right)
= \binom{n-1}{2k} \left(\frac{k}{n} \right)^{2k} \left(\frac{n-k}{n} \right)^{n-2k}
= \frac{(n-1)!}{(n-2k-1)!} \cdot \frac{k^{2k}}{(2k)!} \cdot \frac{1}{n^{2k}} \left(\frac{n-k}{n} \right)^{n-2k}.$$

Also, we get

$$\frac{(n-1)!}{(n-2k-1)!} = \prod_{j=1}^{k} (n-j)(n-2k-1+j)$$

$$\leq \prod_{j=1}^{k} (n^2 - n(2k+1) + k(k+1)) \leq (n-k)^{2k}.$$

Hence we have

$$\sum_{i=2k+1}^{n} p_{n,i} \le \frac{k^{2k}}{(2k)!} \left(\frac{n-k}{n}\right)^{n}.$$

From the inequality $(1 + 1/t)^{t+1} > e$, t > 0 and from the Stirling formula we obtain successively:

$$\sum_{i=2k+1}^{n} p_{n,i} \leq \frac{k^{2k}}{(2k)!} \cdot \frac{1}{e^k} \leq \frac{k^{2k}}{\sqrt{4\pi k}} \left(\frac{e}{2k}\right)^{2k} \frac{1}{e^k}$$
$$= \frac{1}{2\sqrt{\pi k}} \left(\frac{e}{4}\right)^k \leq \frac{e}{8\sqrt{\pi}} \leq \frac{1}{4}.$$

So, relation (15) is true in Case 2 too.

Now using Lemma 1 we obtain

$$\sum_{j=1}^{m} p_{n,k+j} \left(\frac{k}{n}\right) + \frac{1}{2} \cdot p_{n,k} \left(\frac{k}{n}\right)$$

$$\geq \frac{1}{3} \sum_{j=1}^{m} \left(p_{n,k+j} \left(\frac{k}{n}\right) + p_{n,k-j} \left(\frac{k}{n}\right)\right) + \frac{1}{3} \cdot p_{n,k} \left(\frac{k}{n}\right)$$

$$= \frac{1}{3} \sum_{i=k-m}^{k+m} p_{n,i} \left(\frac{k}{n}\right) \geq \frac{1}{4}.$$

We need also of some other results. The following lemma is a simplified version of an estimate given in [5]

Lemma 4 Let $F: B[0,1] \to \mathbb{R}$ be a positive linear functional such that $F(e_0) = 1$ and $F(e_1) = y$, where $y \in (0,1)$. Then, for any $f \in B[0,1]$ and $0 < h \le 1/2$ we have

(16)
$$|F(f) - f(y)| \le (1 + h^{-2}F((e_1 - y)^2)) \omega_2(f, h).$$

For the integers $1 \le s \le n$ and $x \in [0, 1)$, denote

(17)
$$\Psi_{n,s}(x) = \sum_{j=s}^{n} p_{n,j}(x) \left(\frac{j}{n} - x\right),$$

and for any $x \in [0,1)$, denote $\tau(x) = \min\{i \in \mathbb{N} \mid i/n > x\}$. In [2] it is proved the following lemma.

Lemma 5 For any number $\alpha > 0$ we have

(18)
$$\lim_{n \to \infty} \Psi_{n,\tau\left(x + \frac{\alpha}{\sqrt{n}}\right)}(x)/\Psi_{n,\tau(x)}(x) = \exp\left(-\frac{\alpha^2}{2x(1-x)}\right),$$

uniformly with respect to x on each compact interval included in (0,1).

3 Proofs of the main results

Proof of Theorem 1

Let $n \in \mathbb{N}$ and the integer $0 \le k \le n$. The inequality in (7) is obvious for k = 0 and k = n. So we consider $1 \le k \le n - 1$. Also using the symmetry it suffices to consider only the case $1 \le k \le n/2$. Denote $m = \min\{k, \lceil \sqrt{n} \rceil\}$.

Consider the positive linear functional $F_1: B[0,1] \to \mathbb{R}$:

(19)

$$F_1(f) = \sum_{j=1}^m p_{n,k+j} \left(\frac{k}{n}\right) \left[f\left(\frac{k-j}{n}\right) + f\left(\frac{k+j}{n}\right) \right] + p_{n,k} \left(\frac{k}{n}\right) f\left(\frac{k}{n}\right).$$

Denote

$$T = \sum_{i=1}^{m} p_{n,k+j} \left(\frac{k}{n}\right) + \frac{1}{2} \cdot p_{n,k} \left(\frac{k}{n}\right).$$

From Lemma 3, $T \ge \frac{1}{4}$. From the definition of the second order modulus we obtain

(20)
$$\left| F_1(f) - 2Tf\left(\frac{k}{n}\right) \right| \le T\omega_2\left(f, \frac{1}{\sqrt{n}}\right), \quad f \in B[0, 1].$$

Then define the linear functional $F_2: B[0,1] \to \mathbb{R}$, $F_2(\cdot) = B_n\left(\cdot, \frac{k}{n}\right) - F_1(\cdot)$. From Lemma 1 we have $p_{n,k+j}\left(\frac{k}{n}\right) \le p_{n,k-j}\left(\frac{k}{n}\right)$, for $j \le k$. It follows that F_2 is also a positive functional. Since $F_1(e_0) = 2T$ and $B_n\left(e_0, \frac{k}{n}\right) = 1$, it follows $F_2(e_0) = 1 - 2T$. Also $F_1(e_1) = 2T\frac{k}{n}$ and $B_n\left(e_1, \frac{k}{n}\right) = \frac{k}{n}$.

Consequently $F_2(e_1) = (1 - 2T) \frac{k}{n}$. If we apply Lemma 4, for the functional $F = (1 - 2T)^{-1} F_2$ we obtain, for any $f \in B[0, 1]$:

(21)

$$\left| F_2(f) - (1 - 2T)f\left(\frac{k}{n}\right) \right| \le \left[1 - 2T + \frac{n}{2}F_2\left(\left(e_1 - \frac{k}{n}\right)^2\right) \right] \omega_2\left(f, \frac{1}{\sqrt{n}}\right).$$

But $F_2\left(\left(e_1-\frac{k}{n}\right)^2\right) \leq B_n\left(\left(e_1-\frac{k}{n}\right)^2,\frac{k}{n}\right) = \frac{k(n-k)}{n^3} \leq \frac{1}{4n}$. Using relations (20) and (21) it follows:

$$\left| B_n \left(f, \frac{k}{n} \right) - f \left(\frac{k}{n} \right) \right| \leq \left| F_1(f) - 2Tf \left(\frac{k}{n} \right) \right| + \left| F_2(f) - (1 - 2T)f \left(\frac{k}{n} \right) \right| \\
\leq T\omega_2 \left(f, \frac{1}{\sqrt{n}} \right) + \left(1 - 2T + \frac{1}{8} \right) \omega_2 \left(f, \frac{1}{\sqrt{n}} \right) \\
= \left(\frac{9}{8} - T \right) \omega_2 \left(f, \frac{1}{\sqrt{n}} \right) \leq \frac{7}{8} \omega_2 \left(f, \frac{1}{\sqrt{n}} \right).$$

Proof of Theorem 2

With the notation given in formula (17) we first prove

(22)
$$\lim_{n \to \infty} \sqrt{n} \Psi_{n,\tau\left(\frac{1}{2}\right)} \left(\frac{1}{2}\right) = \frac{1}{2\sqrt{2\pi}}.$$

We consider two cases.

Case 1: n = 2q. Using formula (13) we have:

$$\sqrt{n}\Psi_{n,\tau(\frac{1}{2})}\left(\frac{1}{2}\right) = \sqrt{2q} \sum_{j=q+1}^{2q} p_{2q,j}\left(\frac{1}{2}\right) \left(\frac{j}{2q} - \frac{1}{2}\right)
= \sqrt{2q} \binom{2q-1}{q} \left(\frac{1}{2}\right)^{2q+1} = \sqrt{2q} \binom{2q}{q} \left(\frac{1}{2}\right)^{2q+2}.$$

Case 2: n = 2q + 1. From formula (13) we have:

$$\begin{split} \sqrt{n} \Psi_{n,\tau\left(\frac{1}{2}\right)} \left(\frac{1}{2}\right) &= \sqrt{2q+1} \sum_{j=q+1}^{2q+1} p_{2q+1,j} \left(\frac{1}{2}\right) \left(\frac{j}{2q+1} - \frac{1}{2}\right) \\ &= \sqrt{2q+1} \binom{2q}{q} \left(\frac{1}{2}\right)^{2q+2}. \end{split}$$

Then

$$\lim_{n\to\infty} \sqrt{n} \Psi_{n,\tau\left(\frac{1}{2}\right)}\left(\frac{1}{2}\right) = \lim_{q\to\infty} \sqrt{2q} \binom{2q}{q} \left(\frac{1}{2}\right)^{2q+2}.$$

Using the Stirling formula we get:

$$\sqrt{2q} \binom{2q}{q} \left(\frac{1}{2}\right)^{2q+2} = \sqrt{2q} \cdot \frac{\sqrt{4\pi q} \left(\frac{2q}{e}\right)^{2q} e^{\Theta_1(q)}}{\left[\sqrt{2\pi q} \left(\frac{q}{e}\right)^q e^{\Theta_2(q)}\right]^2} \left(\frac{1}{2}\right)^{2q+2}$$

$$= \frac{1}{2\sqrt{2\pi}} \cdot e^{\Theta_1(q) - 2\Theta_2(q)}$$

where $\lim_{q\to\infty} \Theta_1(q) = 0$ and $\lim_{q\to\infty} \Theta_2(q) = 0$. It follows (22).

From Lemma 5 we obtain

$$\lim_{n\to\infty} \Psi_{n,\tau\left(\frac{1}{2}+\frac{1}{\sqrt{n}}\right)}\left(\frac{1}{2}\right)/\Psi_{n,\tau\left(\frac{1}{2}\right)}\left(\frac{1}{2}\right) = e^{-2}.$$

Combining with relation (22) we derive the relation:

(23)
$$\lim_{n \to \infty} \sqrt{n} \Psi_{n,\tau\left(\frac{1}{2} + \frac{1}{\sqrt{n}}\right)} \left(\frac{1}{2}\right) = \frac{1}{2\sqrt{2\pi} e^2}.$$

Using the symmetry we can define, for $n \geq 4$

$$T_n = \sum_{\frac{n}{2} + \sqrt{n} < j \le n} p_{n,j} \left(\frac{1}{2}\right) = \sum_{0 \le j \le \frac{n}{2} - \sqrt{n}} p_{n,j} \left(\frac{1}{2}\right).$$

We have

$$T_n \leq \sqrt{n} \sum_{\frac{n}{2} + \sqrt{n} < j \leq n} p_{n,j} \left(\frac{1}{2}\right) \left(\frac{j}{n} - \frac{1}{2}\right)$$
$$= \sqrt{n} \Psi_{n,\tau\left(\frac{1}{2} + \frac{1}{\sqrt{n}}\right)} \left(\frac{1}{2}\right).$$

From (23) we deduce

(24)
$$\limsup_{n \to \infty} T_n \le \frac{1}{2\sqrt{2\pi} e^2}.$$

For $f \in B[0,1]$, $n \geq 4$, consider the decomposition

$$B_n\left(f, \frac{1}{2}\right) = F_n^1(f) + F_n^2(f),$$

where

$$F_n^1(f) = \sum_{\frac{n}{2} - \sqrt{n} \le j \le \frac{n}{2} + \sqrt{n}} p_{n,j} \left(\frac{1}{2}\right) f\left(\frac{j}{n}\right),$$

$$F_n^2(f) = \sum_{0 \le j < \frac{n}{2} - \sqrt{n}} p_{n,j} \left(\frac{1}{2}\right) f\left(\frac{j}{n}\right) + \sum_{\frac{n}{2} + \sqrt{n} < j \le n} p_{n,j} \left(\frac{1}{2}\right) f\left(\frac{j}{n}\right).$$

The linear positive functionals F_n^1 and F_n^2 satisfy the conditions $F_n^1(e_0) = 1 - 2T_n$, $F_n^1(e_1) = (1 - 2T_n)\frac{1}{2}$, $F_n^2(e_0) = 2T_n$ and $F_n^2(e_1) = 2T_n \cdot \frac{1}{2}$. For $f \in B[0,1]$ we have

$$\left| B_n\left(f, \frac{1}{2}\right) - f\left(\frac{1}{2}\right) \right| \le \left| F_n^1(f) - (1 - 2T_n)f\left(\frac{1}{2}\right) \right| + \left| F_n^2(f) - 2T_n f\left(\frac{1}{2}\right) \right|.$$

Using the symmetry we obtain successively:

$$\begin{vmatrix}
F_n^1(f) - (1 - 2T_n)f\left(\frac{1}{2}\right) \\
= \left| \sum_{\frac{n}{2} - \sqrt{n} \le j \le \frac{n}{2} + \sqrt{n}} p_{n,j}\left(\frac{1}{2}\right) \left[f\left(\frac{j}{n}\right) - f\left(\frac{1}{2}\right) \right] \right| \\
\le \sum_{\frac{n}{2} < j \le \frac{n}{2} + \sqrt{n}} p_{n,j}\left(\frac{1}{2}\right) \left| f\left(\frac{j}{n}\right) + f\left(\frac{n-j}{n}\right) - 2f\left(\frac{1}{2}\right) \right| \\
\le \sum_{\frac{n}{2} < j \le \frac{n}{2} + \sqrt{n}} p_{n,j}\left(\frac{1}{2}\right) \cdot \omega_2\left(f, \frac{1}{\sqrt{n}}\right) \\
\le \frac{1}{2} \sum_{\frac{n}{2} - \sqrt{n} \le j \le \frac{n}{2} + \sqrt{n}} p_{n,j}\left(\frac{1}{2}\right) \omega_2\left(f, \frac{1}{\sqrt{n}}\right) \\
= \frac{1}{2}(1 - 2T_n)\omega_2\left(f, \frac{1}{\sqrt{n}}\right).$$

Also, Applying Lemma 4 to the functional $G = (2T_n)^{-1}F_n^2$ we obtain

$$\left| F_n^2(f) - 2T_n f\left(\frac{1}{2}\right) \right| \leq \left(2T_n + \frac{n}{2} F_n^2 \left(\left(e_1 - \frac{1}{2}\right)^2 \right) \right) \omega_2 \left(f, \frac{1}{\sqrt{n}} \right)$$

$$\leq \left(2T_n + \frac{n}{2} B_n \left(\left(e_1 - \frac{1}{2}\right)^2, \frac{1}{2} \right) \right) \omega_2 \left(f, \frac{1}{\sqrt{n}} \right)$$

$$= \left(2T_n + \frac{1}{8} \right) \omega_2 \left(f, \frac{1}{\sqrt{n}} \right).$$

Consequently it follows:

$$\left| B_n \left(f, \frac{1}{2} \right) - f \left(\frac{1}{2} \right) \right| \le \left(\frac{5}{8} + T_n \right) \omega_2 \left(f, \frac{1}{\sqrt{n}} \right).$$

Finally, using relation (24) we obtain relation (8).

References

- [1] H. Gonska and D-x Zhou, On an extremal problem concerning Bernstein operators, Serdica Math. J., 21, 1995, 137-150.
- [2] R. Păltănea. On an optimal constant in approximation by Bernstein operators, Rend. Circ. Mat. Palermo, 52, Suppl., 1998, 663-686.
- [3] R. Păltănea, Estimates with second order moduli, Rend. Circ. Mat. Palermo, 68 Suppl., 2002, 727-738.
- [4] R. Păltănea, Optimal constant in approximation by Bernstein operators, J. Comput. Analysis Appl., 5, No. 2, 2003, 195-235.
- [5] R. Păltănea, Approximation theory using positive linear operators, Birkhäuser, Boston, 2004.
- [6] R. Păltănea, On approximation by Bernstein operators in the knots, Annals of the Tiberiu Popoviciu Seminar of Functional Equations, Approximation and Convexity, 6, 2008, 91-96.
- [7] P.C. Sikkema, Der Wert einiger Konstanten in der Theorie der Approximation mit Bernstein-Polynomen, Numerische Math., 3, 1961, 107-116.

Radu Păltănea

"Transilvania" University of Braşov Department of Mathematics Str. Eroilor, 29, Braşov 500 036, Romania e-mail: radupaltanea@yahoo.com