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The degree of approximation by Bernstein
operators in the knots!

Radu Paltanea

Abstract

We prove the inequality |Bn (f, %) —f (%H < %wg < ), where

s
B,, is the Bernstein operator of order n > 1, the integer k is such that
0 < k < n and wy denotes the usual second order modulus. Also, we

give a better estimate of approximation for the point %
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1 Introduction. Main results

Denote by B0, 1], the space of bounded real functions on the interval [0, 1],

with the sup-norm: | - || and denote by C0, 1] the subspace of continuous
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functions. We denote the monomial functions e;(t) =#/, j =0,1,2,... and
let II; the set of linear functions.
The Bernstein operators B,, : B[0,1] — RI%! n € N are given by:

(1) B,(f,z) = an](x) - f <l> , feBlo,1], x €[0,1],

n

(2) Pnj(x) = (n) (1 —z)" .

J
We express the order of approximation in terms of the second order of

continuity, given by:

wa(foh) = sup{[f(z+p) —2f(x) + f(z —p)|, x £ p € [0,1],
0 < p<h}, for f € B]0,1], h > 0.

The global order of approximation is given, in the following theorem,
see [4]:
Theorem A For any n € N we have
Bn - Bn -
. o IBD=1 1B =

1.
fEBIOINITL (yy (f)%) FECIOANIT (g (f’ﬁ>

Moreover, if we take into account the result given in [3], we obtain

Theorem B For any irrational number z € (0, 1),

(4)

Bn ) - Bn ) -
wp s BRI @1 B @)
neN feC0,1]\II1 Wo (f7 %) neN feB[0,1]\II1 Wy (f7 %)

On the other hand, for the degree of approximation in the knots, the

following result of Gonska and Zhou, [1] is known:



The degree of approximation by Bernstein operators in the knots 101

Theorem C Let

1+ ) e 20717
_ =
24+2) 72V’
j=2

1
Then for any 3 <a<1,¢e>0, there is an N(a,e) € N such that for all
n > N(a,¢e), f € C[0,1],

0 (1) o (8) = v 0.8

1
i.e., for any 3 < a < 1 we have

~ (0.68.

r

() sup

1—a<k<q
<m<

kY _ £ (k
(6) limsup  sup sup B (£,3) = 1 ()]

<.
n—00  1-a<k <q fEC[O,1NTL Wo (f, %)

In connection to Theorem C, we show in this paper that there exists a

constant C' < 1 such that the inequality ‘Bn (f, %) —f (%)} < Cwsy (f, %)

n

holds uniformly for all n € N and all the knots %, 0 < k <n. More exactly,

we have

Theorem 1 The following inequality

0 ) k)

foralln e N, 0 <k <n, f € B|0,1].

1
As regard to the estimate in the point 3 we prove:
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Theorem 2 We have

- B (£3) =) _ 5 1
8 1 < -4+ — <0.652.
(8) I sup fers[gg\Hl o (f, %> =3 + 2v/2me2 ~

Note that the constant given in Theorem 2 is smaller than the constant

r in Theorem C.

2 Auxiliary results

Lemma 1 We have

1 k k k
9) 5 Pnk—i | < Dnitj - < Dnj—j — )

for all integers k> 1, n > 2k, 0 < j < k.

Proof. For the integers k > 1, n > 2k, 0 < 5 < k, denote

T G J)(”—k+J)< k )2j
J (k+)n—k—-—j3)\n—-Fk)
Then for £ > 1, n > 2k, 0 < j < k it follows

Ui (n=k+j+ 1)k J)( k )2

Uk (n—k—j)(k+j+1) k
(n
(n
1.

n, Pnk+j (
UMt = o ()
Pnk—j

SIP?‘Sl??‘

We have

k:)k:+(2k—n)j—j(j+1)< k )2
k+ k

—kk+(n—=2k)j—j(+1)

<
Since Ugl’k =1, for k > 1, n > 2k, we obtain

(10) UMt <1, fork>1,n>2k 0<j<k.
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On other hand, in order to prove
(11) U 2§,fork21,n22k,0§j§k,

it is sufficient to show that U,?’k > %, for k>1,n>2k Putm=n—k.

Then £ < m. Denote a’fn = U,TJrk’k. It remains to show that

(12) a’, > —, for1 <k <m.

k
m

N —

We have

m

Consequently

aky  k+m+1( m 2
ak, m—k+1\m+1) °

It . . ( ) k+m-+1 m 2k [k )
we consider the function ¢p(m) = m € o0
b m—k+1\m-+1 ’ ’ ’

where k > 1, we find

d 2k m2k-1 )
il — : (m — 1).
dm(pk(m) (m—k+1)2 (m+1)2+1 (m =& +1)
Also,
lim ¢r(m) = 1.

Then one of the following cases is true:
i) or(m) <1, for m € [k, 00);

ii) There is mg € (k,k* — 1) such that ¢(m) > 1, for m € [k, mg] and

r(m) <1, for m € [myg, 00).
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Consequently, we have:

k2k
glllsz a® = min {ai, %Eréo aﬁl} = min {1, w} .
Finally, in order to show (12) it suffices to show that

2%)!
k2k

—~

<2 keN, k> 1.

This inequality is obvious for £ = 1. Using the Stirling formula, we obtain

for k > 1: o
2k)! 2
(k2k> S 2V km (g) eﬁ.

Denoting t, = 2vkm (%)% ei, we obtain

¢ 2 2
k1 _ [k+1 (g) §ﬂ<g) <1
tr k e e

So that, for k > 2,

2k)! 2\*
(2,3 gtk<t2:2\/27r<—> e =1.42... < 2.
k e

The proof is finished.

Lemma 2 (Sikkema [7]) For any z € [0, 1] and any integers 1 < s < n,

we have:
. i o n—1 s n+l—s
(13) gpm(x) (E —x) — (S_ 1)3; (1— )",
For any a € R, denote by [a], the integer part of a.

Lemma 3 Let the integers k,n, such that 1 <k<n/2. Putm = min{k, \/n]}.
We have

“ k 1 k 1
(14) ;pn,k—i—j (ﬁ) + B * Dn.k (ﬁ) > 1
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Proof. First we prove the relation
k+m
k 3
15 n,g \ Z o

We consider two cases.

Case 1: m = [y/n]. We have

2 ) <0 8 (5

li—k|>v/n li—k|>v/n

AN
3
(7=
S
s
VR
3|
N————
VR
~.
~N
oyl
N————
I
=
<3
ol
=
|
RS

Therefore relation (15) is true.

Case 2: m = k. Using the following identity (13) we obtain

- k N — E\ (i Kk
o (H) £ 3 (B (E-4)
n k 4 n n o n

i=2k+1 i=2k-+1
_ (n—-1 ENZ (n— k\" %
N 2k n n
(n—1)! B 1 =k
(n—2k—=1)! (2k)! n? n ’
Also, we get
(n—1)! i . .
! —y

<

IN

k

<
—_

Hence we have

(n* —n(2k + 1)+ k(k+1)) < (n — k).

105
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From the inequality (1 4 1/¢)"™ > e, ¢ > 0 and from the Stirling formula

we obtain successively:

IR R AT
Pri = (2k)! e = Vark \2k ek
1
4

1=2k+1

So, relation (15) is true in Case 2 too.

Now using Lemma 1 we obtain

AV

Wl =
[

T~
S

3

E

+

<

A/~

S|

S~
_|_
RS

3

El

L

A/~
w

~—

~——
_|_

Wl =
=

3

B

A~
w

~—

We need also of some other results. The following lemma is a simplified

version of an estimate given in [5]

Lemma 4 Let ' : B[0,1] — R be a positive linear functional such that
F(ep) =1 and F(e;) =y, wherey € (0,1). Then, for any f € B0, 1] and
0 < h <1/2 we have

(16) IE(f) = fW)] < (L+h72F((er = y)*)) walf, h).

For the integers 1 < s < n and z € [0, 1), denote

1) bosle) = st (£ 1),

and for any x € [0,1), denote 7(x) = min{i € N | i/n > z}. In [2] it is

proved the following lemma.
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Lemma 5 For any number o > 0 we have

(18) lim \I’n77(x+%) (l’)/\l’n77(x) (JJ) = exp (—7> s

n—00 2z(1 — x)

uniformly with respect to x on each compact interval included in (0, 1).

3 Proofs of the main results

Proof of Theorem 1

Let n € N and the integer 0 < k < n. The inequality in (7) is obvious for
k =0and k =n. So we consider 1 < k <n—1. Also using the symmetry it
suffices to consider only the case 1 < k < n/2. Denote m = min{k, [\/n]}.

Consider the positive linear functional F; : B[0,1] — R:

(19)

=L () [ (52) +0 (52) [+ () )

Denote
“ k 1 k
T = E ki | — — ol =1,
j:1p 7k+‘7 (n) _'_ 2 p 7k <n)

From Lemma 3, T" > i. From the definition of the second order modulus
we obtain
(20) Fi(f)-2Tf E <Tw fL f € BJ0,1]

1 n ~ 2 ) \/ﬁ ) ) .

Then define the linear functional F, : B[0,1] — R, F»(:) = B, ( k) —

Fi(-). From Lemma 1 we have p,, 1 ; (%) < D k—j (%), for j < k. It follows

that Fy is also a positive functional. Since Fi(eg) = 2T and B, (eo, %) =
1, it follows Fy(eg) = 1 — 27. Also Fi(e;) = 2T% and B, (el,%) =k

n
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Consequently Fy(e;) = (1 —2T)%. If we apply Lemma 4, for the functional
F = (1-2T)"'F, we obtain, for any f € B0, 1]:

(21)

R -a-omy (5)|< -+ 2 ((el -5 ) o (1)

But F, ((el —)2> < B, ((el — %)2 , %) = k(fgk) < ﬁ. Using relations
(

(20) and (21) it follows:

()13 -
< Tuw, (f%) + (1_2T+%)

- (47 (1) <3 (3)

Proof of Theorem 2

R - 12 (£))

F(f)-2Tf (%) ‘ +

With the notation given in formula (17) we first prove

(22) S V¥, ) G) - 2\/1%'

We consider two cases.

Case 1: n = 2q. Using formula (13) we have:

Vi, 1y (%) = V2 22‘1 P20 @) (2]_61 - %)

Jj=q+1

()G -G

Case 2: n = 2¢q + 1. From formula (13) we have:

VAT, o) (%) V20+1 mf Pag+1,; (_) (mzr 1 %)

Jj=q+1

() G)
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Then X ” N 202
Ao Vi) (5) = on v 2Q(q) (5) |

Using the Stirling formula we get:

AT - ()

1 a0

2¢/2m
where lim, o ©1(¢) = 0 and lim, ., O2(q) = 0. It follows (22).

From Lemma 5 we obtain

N (é) Mar(3) (%) =e”.

Combining with relation (22) we derive the relation:

) V(i) (3) - e

Using the symmetry we can define, for n > 4

e 2 ()5 ()

FHvn<ji<n 0<j<Z—v/n

We have

T < Vo), pw‘(%) (%_%)

n4/n<j<n

From (23) we deduce

(24) limsup 7;, <

109
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For f € B[0,1], n > 4, consider the decomposition

B, (f.3) = FH) + F2).

Fi(f) = > puy (%) f (%) ,

NI
) B 1 j 1 J
= 2 ) 2 m G G)
The linear positive functionals F'! and F? satisfy the conditions Fll(eq) =
1—2T,, Fi(e)) = (1 —2T,)3, F2(eo) = 2T, and F2(e1) = 2T, - 3.
For f € B[0,1] we have

= (52) 1 ()=

Using the symmetry we obtain successively:

EXf)— (12T, f (%)‘+

FA) -1 (5) ‘ |

[\ VAN
kS =
S B
. <.
TN N
NN DO —
~—
&
(3]
/N 3 -
o+
Sl-
~

IA

1 1 1
RO

B-VRsj<E v

_ %(1 T ), (f, i) .
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Also, Applying Lemma 4 to the functional G = (27,,) "' F? we obtain

= (5)] < (me3r (o)) (15)

< (g ((-3)4)) )
1

Consequently it follows:

i (48) 5= ) 55)

Elky

Finally, using relation (24) we obtain relation (8).
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