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An application of the Glaeser theorem
to PDE ,s

Jerzy Julian Konderak

Abstract

We consider a system of partial differential equations of the first order such that
the conditions on derivatives imply that solutions are symmetric or even functions.
We apply Glaeser‘s generalization of the Newton theorem to find all C∞ solutions of
such system. These equations may be solved using the classical methods, however,
we would like to show how the important theorem of Glaeser has applications in
solving PDE‘s.
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1 Preliminaries

We denote by σk : Rn → R for k = 1, 2, ..., n the elementary symmetric

functions

σk(x1, ..., xn) =
∑

1≤i1<...<ik≤n

xi1...xik.

We also put θ := (σ1, ..., σn). Then it is known that θ has its Jacobian

different from zero on an open dense subset of Rn (cf. [4]). There is the

classical theorem of Newton which says that any symmetric polynomial in

n variables is a composition of θ with other polynomial. It was until 1963

that this theorem was generalized by Glaeser for C∞ symmetric functions

(cf. [4]). This theorem is generally not true for Ck symmetric functions.

Barbançon considered this case and obtained a factorisation with a decrease

of the class of differentiability (cf. [1]).
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In all of this paper we supose that U is an open connected subset of Rn.

Moreover we suppose that U is invariant with respect to the permutations

of the coordinates. We shall look for the solutions of our partial differential

equations on the set U .

We consider a system of partial differential equations

uxi
= uxj

(1)

where i, j = 1, 2, ..., n and u : U → R.

Remark 1 These equations may be solved using the classical theory of

characteristic (cf. [3]). Another way is to apply the Frobenius theorem.

We shall sketch the latter one. Let M be a differentiable manifold; means

here at least of the class C1. Suppose that A is a set of the differentiable

vector fields on M such that the function x → dim{Xx : X ∈ A} is con-

stant on M . Then one of the versions of Frobenius theorem says that A is

completely integrable if A is involutive (cf. [6]). The complete integrability

of A means that there exists a foliation on M such that the tangent spaces

to its leaves are equal to span{Xx : X ∈ A} as x varies in M . The leaves

of the foliation may be obtained from the orbits of the flows of the vector

fields from A. As consequences of the Frobenius theorem we get that if A
is involutive then the solutions of the system

∂Xu = 0, X ∈ A.(2)

are exactly the functions which are constant on the leaves of the foliation

determined by A. In the case of equations (1) the set A consists of the

vector fields
∂

∂xi
− ∂

∂xj
(3)

for i, j = 1, ..., n. Then the leaves of the foliation determined by (3) are

given by the equation x1 + ... + xn = const. Hence it follows that the

solutions of (1) are given locally by u(x1, ..., xn) = ϕ(x1, ..., xn) where ϕ is

differentiable on an open subset of R.
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However, we shall apply here the deep theorem of Glaeser to resolve

equations (1). The idea is to prove that if u satisfies (1) then u has to be

symmetric; then we apply the theorem of Glaeser to get the solutions.

2 Symmetric solutions

Lemma 1 If u : U → R is a C1 solution of (1) then u is a symmetric

function.

Proof. We fix x3, ..., xn and define

U1 := {(x, y) ∈ R2|(x, y, x3, ..., xn) ∈ U}.
Consider φ : U1 → R defined as follows:

φ(x, y) := u(x, y, x3, ..., xn)− u(y, x, x3, ..., xn).

Then we have φ(x, x) = 0 for all (x, x) ∈ U1. We consider the auxiliary

function

µ1(t) = φ(t, a− t) where a ∈ R. Then we have that

µ′1(t) = φx(t, a− t)− φy(t, a− t)

= ux1(t, a− t, x3, ..., xn)− ux2(t, a− t, x3, ..., xn) = 0.

Hence µ1 is constant. Then it follows that φ is zero on the line x− y = 0

and is constant on the lines x + y = a. Hence it follows that φ is constant

equal zero. It means that u is symmetric with respect to x1 and x2 while

x3, ..., xn are fixed. Analogically one may show that u is symmetric with

respect to all of the variables.

Theorem 1 The function u is a C∞ solution of (1) if there exists a C∞

map ϕ : R→ R such that u = ϕ ◦ σ1.

Proof. Suppose that u is a C∞ solution of (1). From Lemma (1) it

follows that u is symmetric. Then from the theorem of Glaeser (cf.[4]) it

follows that there exists a C∞ map ϕ : Rn → R such that u = ϕ ◦ θ. The

system (1) is equivalent to

ux1 = uxi
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where i = 2, ..., n. Hence we get that

n∑

k=1

∂ϕ

∂yk
· ∂σk

∂x1
=

n∑

k=1

∂ϕ

∂yk
· ∂σk

∂xi

where i = 2, ..., n and then

n∑

k=1

∂ϕ

∂yk

(
∂σk

∂x1
− ∂σk

∂xi

)
= 0.(4)

It follows that
∂ϕ

∂y2
, ...,

∂ϕ

∂yn
are solutions of the system of linear equations

with the functional coefficients. The coefficients in (1) form a(n−1)(n−1)

matrix with the components
(

∂σk

∂x1
− ∂σk

∂xi

)
i, k = 2, ..., n.(5)

Since
∂σ1

∂xi
= 1

then for all i = 1, ..., n the determinant of (1) is equal to

det




∂σ1

∂x1

∂σ1

∂x2
. . . ∂σ1

∂xn
∂σ2

∂x1

∂σ2

∂x2
. . . ∂σ2

∂xn
...

... . . . ...
∂σn

∂x1

∂σn

∂x2
. . . ∂σn

∂xn


(6)

Then the determinant in (5) is just the jacobian of the map θ. It is

well known that this Jacobian is different from zero on an open and dense

subset of Rn (cf.[4]) and then on an open and dense subset of U . Then it

follows that
∂ϕ

∂y2
=

∂ϕ

∂y3
= ... =

∂ϕ

∂yn
= 0

as they are the unique solutions of (4) on the set U . Hence ϕ does not

depend on the variables y2, ..., yn. It follows that if u is a solution of (1)

then it has to be of the form u = ϕ ◦ σ1. On the other hand, one veryfies

easily that each function which is a composition of σ1 and ϕ ia a solution

of (1). This is the end of proof.
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3 Even solutions

Suppose now that Ai are the reflections in Rn defined by

Ai(ej) := (−1)δij where i, j = 1, ..., n and e1, ..., en is the canonical basis of

Rn.

Suppose that V is an open ball in Rn centered at the origin of the

coordinates. Then V is invariant with respect to all of the reflections Ai

where i ∈ {1, ..., n}.
We shall say that u : V → R is even if for each i ∈ {1, ..., n}

u ◦ Ai = u.

Let Q : Rn → Rn be the following function

Q(x1, ..., xn) := (x2
1, ..., x

2
n).

We shall use the map Q to factorize functions which are even.

Lemma 2 If u : V → R is an even function of the class C∞ then there

exists a C∞ function ψ on Rn such that

u = ψ ◦Q.(7)

Proof. Let us notice that the function Q satisfies conditions Θ1, Θ2,

Θ3, Θ4 of Theorem II ([4]). We choose polynomials wk on Rn which tend to

ϕ in the topology of uniform convergence together with an arbitrary order

derivatives on compact subsets of Rn. We denote by F(V ) the set of real

valued functions on V . Then we define an operator P : F(V ) → F(V )

which makes functions even and which is the identity on even functions;

namely if h : V → R then

P (h)(x1, ..., xn) =
1

2n

∑
p⊂1,...,n

h(ε1(p)x1, ..., εn(p)xn)

where

εi(p) =

{
1, if i ∈ p

−1, otherwise
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Then we obtain a sequence of even polynomials P (wl) which converges

to u. We observe that this lemma is valid for functions which are polyno-

mials in x1, ..., xn; this may be shown in a simple way as is done for one

variable in [7]. Then for each natural l there exists a C∞ map ψl such that

P (wl) = ψl ◦Q. In fact, ψl may be shown to be also polynomials. By the

theorem of Glaeser (cf. [4]) the set of the functions

AQ(V ) := {h ◦Q|V | h ∈ C∞(Rn)}
is closed in the set of all C∞ functions on V . Hence u ∈ AQ(V ); in the

other words it means that there exists a real valued C∞ function ψ on Rn

such that u = ψ ◦Q. This ends the proof.

Remark 2 It is clear that any functions, of an arbitrary class, which has

a decomposition as in (2) is even. We also would like to underline that in

[5] we use the above method to prove a similar property.

Theorem 2 A function u of the class C∞ on V is a solution of the system

of partial differential equations

xjuxi
= xiuxj

(8)

if there exists a C∞ map ϕ : R→ R such that

u = ϕ ◦ σ1 ◦Q.

Proof. Let u be a solution of (2) and let (x1, x2, ..., xn) ∈ V then there

exists r, α ∈ R such that x1 = r cos α and x2 = r sin α. Then we consider a

map

γ(t) = u(r cos t, r sin t, x3, ..., xn). After differentiating γ and applying (2)

we get that γ′ = 0. It follows that γ(α) = γ(π−α). Hence u(x1, x2, ..., xn) =

= u(−x1, x2, ..., xn) which means that u is even with respect to the first

variable. Analogically, one proves that u is even with respect to all of the

variables. Then there exists a C∞ map ψ : R → R such that u = ψ ◦ Q.

Since u satisfies equations (2) then for each i, j = 1, ..., n and for each

(x1, ..., xn) ∈ U

xi[2xjψyj
(x2

1, ..., x
2
n)] = xj[2xiψyi

(x2
1, ..., x

2
n)].
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Then it follows that ψ satisfies the following equations

ψyi
= ψyj

for i, j = 1, ..., n. Now from (2) we have that there exists a function

ϕ : R→ R such that ψ = ϕ ◦σ1. Hence we get that u = ϕ ◦σ1 ◦Q. On the

other hand functions which are compositions of Q, σ1 and any C∞ function

ϕ are clearly solutions of (2).

Remark 3 One may solve equations (1) and (2) using, for example, the

classical methods of characteristic and gets much better results because can

find similar solutions with the lower class of the differentiability of ϕ. Un-

fortunately, the theorem of Newton is not valid for Ck functions. In general

a function ϕ, if it exists, is of the lower class than k (cf. [1]). There are

many generalizations of the Glaeser theorem (cf. [2] and the references

there), which may find their applications in the other branches of mathe-

matics.

Remark 4 The functions ϕ, ψ which exist and determine solutions of the

systems (1) and (2) are unique when restricted to the image of σ1.

Remark 5 Equations (2) may be solved using the Frobenius theorem again

(cf. 1). We observe that the vector fields

xi
∂

∂xj
− xj

∂

∂xi
, i, j = 1, ..., n(9)

form an involutive family. The foliation obtained from (2) consists of sub-

manifolds defined by x2
1 + ... + x2

n = const. Hence the local version of

Theorem (2) follows.
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