Georgian Mathematical Journal
1(1994), No. 3, 235-242

ON CONVERGENCE SUBSYSTEMS OF ORTHONORMAL
SYSTEMS

G. BARELADZE

ABSTRACT. It is proved that for any sequence {Ry}32 ; of real num-
bers satisfying Ry > k (k > 1) and Ry = o(klogy k), k — oo, there
exists a orthonormal system {on ()}, € (0;1), such that none
of its subsystems {wn, (z)}72 ; with ny < Ry (k > 1) is a convergence
subsystem.

Let {¢n(z)} be an orthonormal system (ONS) on (0;1). It is called a
convergence system if the series > ¢, ¢, () is convergent almost everywhere
whenever the sequence {c,,} of real numbers satisfies Y ¢2 < oo.

It is well-known [1] that not every ONS {p,(x)} is a convergence sys-
tem. However [2], [3], each of them contains some convergence subsys-
tem {¢n,, (r)}. A question was formulated later [4] whether there exists a
common estimate of growth rate of numbers nj in the class of all ONS.
B.S.Kashin [5] answered this question in the affirmative: one can determine
a sequence of positive numbers { Ry} such that from any ONS it is possible
to choose a convergence subsystem {p,, } with ny < R, 1 < k < co. In
the same paper [5] the problem of finding { R;} with a minimal admissible
growth order is formulated and the hypothesis Ry = k'*¢ (¢ > 0) is con-
jectured. G.A.Karagulyan [6] proved that one can take Ry = A¥, A\ > 1.
However, this upper estimate is rougher than the one expected in [5].

In this paper we shall give the proof of the theorem providing the lower
estimate for {Ry}.

Theorem. For any sequence {Ry}5>, of real numbers satisfying
Ry>k (k>1) and Ry =o(klogyk), k— oo, (1)

there exists an ONS {¢n(x)}22, x € (0;1), such that none of its subsystems
{@n, ()}, with ng < Ry (k> 1) is a convergence subsystem.

Several lemmas are needed to prove this theorem.
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Lemma 1 (H.Rademacher [7]). For any ONS {1, (2)}_,, 2€(0;1),
and any collection of real numbers {c, }N_,

N
< 201< A
/ (1221<XN|ch1pn ) dx clogz(]\f—i-l)ZCm 1<N<x

n=1

Lemma 2. For any N > 1 there exists an ONS

N) = {el @), @ e (0:1),

satisfying, for any collection of natural numbers 1 <ny <ng < -+- < Ny, <
N (1 <m < N), the inequality

/01 1smjixm’Z¢ DILEY: %vm (2)

Proof. We shall assure that the requirements of this lemma are satisfied by
the ONS usually used in the proof of the Menshov-Rademacher theorem.
The functions ¥ (z), 1 < n < N, belonging to this ONS (see [8], p.295)
have, in particular, the following properties:

(1) cvV N s—1,2s—1
s—m1 TE 2N’W)’
N o cvV N 2s—1., s 1< <N .
¢n(l')— n—s’ z € 4N 7 2N )» = 8= 0V, S#”’
n—1. n
0, T e (3N 2N>

(ii) ¥¥ (x) is constant on each of the intervals

s—1 s
(4N’W)’

1
/ O () dz = O;
0

(iv) ¥ () is extended from (0;1) onto (—o0;00) with period 1.
Denote §; := (52?\,1, 22;,1), 1 < s < N. When z € §,, because of (i) we
haveqlzzj,v(x)EOforlgpgsandwé\](m)§0fors§p§N(1§s§N).

IN +1< s <4N;

(iii)

Here and in what follows ¢ denotes positive absolute constants which, in general,
may differ from one equality (inequality) to another.
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Therefore for fixed numbers 1 <n; <ng < -+ <n, < N (1 <m<N)
and for each = € 5 (1 < s < N) we obtain

Y@= X+ Y = ¥ |+
k=1

knpg<s kng>s king<s
J
N N
z)| <3 max x ‘
X wl@)| <3 max | > ul @)
king>s k=1
Hence

12%\2% Dz g [ S el =

gkl

1<s<N;

:TNZ <s<

k:1<k<m,
ny#s

JAETRPETEITES oy SR P o(E BE

ds

Ing, —s|’

Remark 1. For any positive integer Q, {¥ (Qx)}2_; is an ONS on (0;1)
also satisfying the inequality (2).

Remark 2. Let Ny, N1, Qo, @1, p be positive integers. If Q1 = 4pNyQo,

then functions belonging to different collections {¥No(Qox)})?, and

{pN 1(Q1:z:)}2[;1 are mutually orthogonal and pairwise stochastically inde-
pendent on (0;1).
Both conclusions follow readily from (i)—(iv).

Lemma 3. Suppose a function f € L%O‘l) is not equivalent to zero and

A= {re 1) 1@I> 50y, }
Then
A > 21 4 22 ' ’
mes A > (| f7: /4IF1Z: ¥
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Proof. Indeed, we obtain (using Hoélder’s inequality)

£y, = [ 17@da+ /(0,1)\A|f<z>|dzs
<(mes A [z, + 51l

(0; 1) (03 1)

which immediately implies (3). O

Lemma 4. Let N,Q,m (1 <m < N) be positive integers. Then for any

collection of natural numbers 1 <nj; <ng < -+ <Ny < N

mes{m (0; max z_:q/) ’ }>c%

<j<m

where YN (z) € Y(N), 1 <n < N (see Lemma 2), and

J = max ‘ank Qx) ‘

1<5<m

Proof. By Lemmas 1 and 2 (see also Remark 1) we have

/ ( max ’ank Q) ) dz < emlogs(m + 1),

1<j<m
J? zcﬁloggN; 1<m< N <oo.

Thus, applying Lemma 3 , we obtain

mes{x (0; max ‘Zw ’ f}> m _log N

1<j<m

‘N logs(m 4+ 1) —

Proof of the theorem. If the conditions (1) are fulfilled, then Ry =k logyk/e(k),
2 < k < oo, where (k) tends to infinity. Moreover, without loss of general-

ity, it can be assumed that

a) Rl = 1;
b) e(k) is a nondecreasing sequence of positive integers;

c¢) the sets A, := {k : (k) = m} have the form (vp_1;vm] NN
(m=1,2,...), where vy = 0, log, log, logs Vs, = Py (m > 1) and

{pm }2°_; is some increasing sequence of positive integers.

In particular, for k € A, (m > 2) we have

2Pm—1

logs k > logy Vpm—1 = 2 > 22" s = e(k),

e(klogy k) < e(vmlogy vm) < e(Wmt1) = m+1 < 2e(k).

(4)
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Denote
T, = 0, Ty, = 2[klog2klog2 log, k]7 2< k< 00, (5)

and E,, :={k: R <Tpn}, 2 <m < oo (here [z] is the integer part of the
number x).
Since the function p(z) = ze(x)/log, x increases on (e; 00), taking into
account (4) and (5), we have, for m > vy,
klog, k
Em:{1;2}u{k23:Rkng}:{1;2}U{k23:7;2%) <T,) =
klogy k

e(k)
o {1;2} U {k >3:2k < @(Tm)} = {k; >1:k< %@(Tm)}.

:{1;2}u{k23:4p( )S@(TM}D

Therefore for a large m (m > my > v1)

keA

1 1 Tpne(T)
E., —p(Ty) — 1> - ————=, 6
Bl > 5olT) =12 3 oo (6)
1 Toy16(Tn 1 T
Bpa| > LTt @net) S 1 Tt g s (g
3 10g2 Tm+1 3 Tm 10g2 Tm+1
Because of
1 1 1 1
_ ~ P — Prmt) > = (m > 2
log, Ty kEZA [k log, k log, log, k] ~ 8 (P = Pm—1) 8 (m 22)

we can select a subsequence Ty, = Tk (1 <k < oo; Tl =0, Tg = 14) such
that

1 1 1 1
—Fs < Z ~ = S —, m Z 27 (8)
2 2
2m ke € A 10g2 Tk: kqr € A 10g2 qu m
and hence
£(Tk) _ Z £(Ty,)
k:qr€lAm 10g2 T, k:qr€Ap, 10g2 qu
e(qr) 1 1
> Z =m Z >— m>2. (9)
b e A log, T, o= log, T, 2m
Let
Nm = Tm - ~m7 P
' (10)

QQ = 1, Qm—i—l = 4NQO, 2<m < oo.
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Consider the orthonormal collections
{1[]711\%1 (me)}g;nla 2<m < oo,

and construct with their aid the desired ONS {p, (z)}32, as
(pn(l’) = q/}k; ”L(me)v (11)

where n € (Tm_l;fm], k= nffm_l, 2 <m < oo,z € (0;1) (the orthonor-
mality follows from (10) and Remark 2).
Let {ni}32, be a sequence of positive integers with & < np < R, 1 <
k < 0o. We set
Gy, = {]{7 : Tm,1 <ni < Tm}7
My, = |G,
e ((1 +Mm)log2f ) 2 tor ne (Tm 1,fm]; m > 2.

On account of (8)

oo ) oo , %) M
. — m _
; " “12:2 k:inlz;nk <Tm o mz::z (1+ My,)logy T
oo
< —
kZ:Q log, Tg, mZQ ot qé:A 10g2

It is thus sufficient to show that the series
o0
> an, on, (@) (12)
k=1

diverges on some set of positive measure.
Note that

G = {k :np < T \{k : gy < Tppv} D
S{k: Ry < T )\{k:k<Tp_1}, m>2.

Consequently in view of (6) and (7)

My, > |{k’ 1 Ry < fm]’| - |{k 1k < Tvm 1}| = Hk t Ry < qm}| Ty, s

1 1 1 ng(T )

> |E - 2|EQ77L 1+1| 2‘ (bn‘ - m 2> mi. (13)

m

6 logs Trn
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Hence by (11) and Lemma 2

1
I : :/ _ max _ ‘ Z Uy Py, () |dx >
0 T

~1<<Tm k:ﬁn71<nk§j
S e 1 1og2 Ny, M, >
1 + M,, 1og2 V Nom
[ M, 1 /
Og2 m m > ma,
and therefore
lim J,, = oc. (14)
If A,, denotes the set
1~
{ €(0;1): _ max ‘ Z ankcpnk(x)‘ > me}, m > 2,
Ton1<i<T, ~ S 2
"o " kT <ng<j
then by (11), Lemma 4, (13) and (9)
M/" Mn 1 T/"
mes A,, > L>~L>7M, m > maq;

- 1 & (T 1 T
ZmesAmsz e k~):7 Z e(Ty)
m=2 6 k=m IOgQ Tk kiqr>qm na 10g2 qu
1 e(T, )
I T ID SID D= S
kiqr>vm, 2 m=l+mi kiqp €A, 02 I

It is easy to verify (see (10),(11), Remark 2) that {A,,}>_, is a sequence
of stochastically independent sets. Therefore by (15) and the Borel-Cantelli
lemma

mes( lim sup Am) =

m—00

Hence we conclude because of (14) and the definition of sets A, that the
series (12) diverges almost everywhere on (0;1). W
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