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ON THE ASYMPTOTICS OF SOLUTIONS OF ELLIPTIC
EQUATIONS IN A NEIGHBORHOOD OF A CRACK WITH

NONSMOOTH FRONT

V. A. KONDRAT’EV AND V. A. NIKISHKIN

Abstract. Two terms of asymptotics near crack are obtained for solutions
of the Dirichlet boundary value problem for second-order elliptic equations
in divergent form. The front of a crack is from C1+s and the coefficients of
the equations belong to Cs (0.5 < s < 1).
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A second-order elliptic equation in G \ Ω is considered, where G ⊂ Rn is a
domain with a smooth boundary, Ω is an (n− 1)-dimensional manifold with a
boundary from C1+s, 0 < s < 1.

We study solutions of the equation
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
= 0, x ∈ G \ Ω, (1)

that belong to the Sobolev space W 1
2 (G) and satisfy the condition

u(x) = 0, x ∈ Ω. (2)

Let L be the boundary of Ω, r be the distance from x to L, xL be a point
on L nearest to x, ϕ be the polar angle in the plane normal to L and passing
through xL.

Singularities of solutions of elliptic equations near a nonsmooth boundary
were studied by many authors, see, e.g., [1]–[4].

In [4], the following representation was obtained for the plane (n− 1)-dimen-
sional domain Ω:

u(x) = C(xL)r1/2Φ(ϕ) + u1(x),

where Φ(ϕ) is a smooth function,

|u1| ≤ C0r
1/2+ε, 0 < ε < min{s, 0.5},

|C(xL)|+ |C0| ≤ const · ‖u‖W 1
2 (G).

The following result is the main theorem of our paper.

Theorem 1. Let u(x) ∈ W 1
2 (G) be a solution of problem (1), (2), and let

aij ∈ Cs(G) (i, j = 1, . . . , n), Ω ∈ C1+s,

where 0 < s < 1.
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Then:
if 0 < s ≤ 0.5, then

u(x) = C(xL)r1/2Φ(ϕ) + u1(x),

where Φ(ϕ) is a smooth function,

|u1| ≤ C0r
1/2+ε, 0 < ε < s,

|C(xL)|+ |C0| ≤ const · ‖u‖W 1
2 (G);

if 0.5 < s < 1, then

u(x) = C1(xL)r1/2Φ1(ϕ) + C2(xL)rΦ2(ϕ) + u1(x),

where Φ1(ϕ), Φ1(ϕ) are smooth functions

|u1| ≤ C0r
1+ε, 0 < ε < s− 0.5,

|C1(xL)|+ |C2(xL)|+ |C0| ≤ const · ‖u‖W 1
2 (G).

Straightening of the boundary. Let P be an arbitrary point of the set L.
Consider a neighborhood U of P in which Ω admits a one-to-one projection to
the tangent plane. Assume that P is the origin and that in this neighborhood
we have

Ω = {x | x1 = F (x2, . . . , xn), (x2, . . . , xn) ∈ Ω1}, O ∈ ∂Ω1.

∂Ω1 is given in a neighborhood of the origin by the equation

x2 = h(x3, . . . , xn) ∈ C1+s.

Let us extend F (x2, . . . , xn) ∈ C1+s in a neighborhood of the origin so that
the class of smoothness be prescribed. Let F (0),∇F (0) = 0.

Introduce an averaging kernel K(τ) such that K(τ) ∈ C∞(R1), K(τ) is even,
K(τ) ≡ 0 for | τ |≥ 1, and

1∫

−1

K(τ)dτ = 1.

The straightening of the boundary consists of two steps.
The first transformation of the coordinates has the form:

x1 = x′1 + H(x′), x2 = x′2, . . . , xn = x′n,

where

H(x′) =

∫

Rn−1

F (t)
n∏

l=2

(
1

|x1| K
(

tl − z′l
|x1|

))
dt.

The second transformation of the coordinates is the same as that in [4].
Under the above transformations, equation (1) becomes an equation in diver-

gent form with coefficients in Cs.
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Dirichlet problem in a dihedral angle for an equation with constant
coefficients. Let G0 be a dihedral angle

G0 = {x | 0 < x2
1 + x2

2 < ∞, 0 < ϕ < ω},
where ϕ is the polar angle in the plane (x1, x2).

Set

ρ =

√√√√
n∑

i=1

x2
i , r′ =

√
x2

1 + x2
2

ρ
.

We need the weighted Sobolev spaces Ẇ 0
α,β and Ẇ 1

α,β in which the norms are
defined as follows:

‖u‖2
Ẇ 0

α,β
=

∫

G0

u2ρα(r′)βdx,

‖u‖2
Ẇ 1

α,β
=

∫

G0

ρα(r′)β grad2 udx +

∫

G◦

u2ρα−2(r′)β−2dx.

Let u(x) ∈ W 1
2 (G0) be a generalized solution (here and below, in the sense of

distributions) of the following Dirichlet problem:

∆u(x) = f0(x) +
n∑

i=1

∂fi(x)

∂xi

, x ∈ G0, (3)

u(x) = 0, x ∈ ∂G0. (4)

The following two assertions can be proved by the method developed in [1].

Theorem 2. Let u(x) ∈ W 1
2 (G0) be a generalized solution of problem (3),

(4), where

f0 ∈ Ẇ 0
α,β(G0), fi ∈ Ẇ 0

α−2,β−2(G0) (i = 1, . . . , n),

α + 2
(π

ω
− 2

)
+ n > 0, β + 2

(π

ω
− 2

)
+ n− 1 > 0.

Then u ∈ Ẇ 1
α−2,β−2(G0).

Theorem 3. Let u(x) ∈ W 1
2 (G0) be a generalized solution of problem (3),

(4), where

f0 ∈ Ẇ 0
α,β(G0), fi ∈ Ẇ 0

α−2,β−2(G0) (i = 1, . . . , n),

α + 2

(
2π

ω
− 2

)
+ n < 0, β + 2

(π

ω
− 2

)
+ n− 1 > 0,

α + 2

(
3π

ω
− 2

)
+ n > 0.

Then u(x) can be represented in the form

u(x) = C1ρ
π
ω Φ1(θ) + C2ρ

2π
ω Φ2(θ) + u1,
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where θ are the coordinates on the unit sphere, Φ1(θ),Φ1(θ) are the eigenfunc-
tions of the Beltrami operator, and

u1 ∈ Ẇ 1
α−2,β−2(G0).

Dirichlet problem in a dihedral angle for an equation with variable
coefficients. Let u(x) ∈ W 1

2 (G0) be a generalized solution of the Dirichlet
problem

n∑
i,j=1

∂

∂xi

(
aij(x)

∂u(x)

∂xj

)
= f0(x) +

n∑
i=1

∂fi(x)

∂xi

, x ∈ G0, (5)

u(x) = 0, x ∈ ∂G0, (6)

where aij ∈ Cs(G0), aij(0) = δij (without loss of generality) (i, j = 1, . . . , n).

Lemma 1. Let u(x) ∈ W 1
2 (G0) be a generalized solution of problem (5), (6),

where

f0 ∈ Ẇ 0
2−2ks+ε0,2(G0), fi ∈ Ẇ 0

−2ks+ε0,0(G0) (i = 1, . . . , n),

2− 2ks + ε0 + 2
(π

ω
− 2

)
+ n > 0, 2− 2(k + 1)s + ε0 + 2

(π

ω
− 2

)
+ n < 0,

k is a nonnegative integer, and ε0 > 0 is sufficiently small.
Then

u ∈ Ẇ 1
−2ks+ε0,0(G0).

The proof of Lemma 1 follows from Theorem 2 by induction on k1 (0 ≤ k1 ≤
k) and is based on the representation of equation (5) in the form

∆u(x) = f0(x) +
n∑

i=1

∂

∂xi

(
fi(x)−

n∑
j=1

(aij(x)− δij)
∂u

∂xj

)
.

Using this representation, Lemma 1, and Theorem 3, we obtain the following
assertion.

Lemma 2. Let u(x) ∈ W 1
2 (G0) be a generalized solution of problem (5), (6),

where

f0 ∈ Ẇ 0
α,2(G0), fi ∈ Ẇ 0

α−2,0(G0) (i = 1, . . . , n),

α = −4π
ω
− n + 4− ε1, 0 < ε1 < 2s− 2π

ω
.

Then u(x) can be represented in the form

u(x) = C1ρ
π
ω Φ1(θ) + C2ρ

2π
ω Φ2(θ) + u1,

where θ are the coordinates on the unit sphere, Φ1(θ),Φ1(θ) are the eigenfunc-
tions of the Beltrami operator, and

u1 ∈ Ẇ 1
α−2,0(G0).

Remark 1. One can readily see that all conditions of Theorems 2 and 3 are
satisfied for the weights in Lemmas 1 and 2 for 0 < ε1 < 2s− 2π

ω
.
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Bounds for |u1|. Consider the cones K and K̂

K = {x | x2
3 + c · · ·+ x2

n ≥ k2(x2
1 + x2

2)},
K̂ = {x | x2

3 + · · ·+ x2
n ≥ k̂2(x2

1 + x2
2)}

and the domains
G1 = G0 \K, Ĝ1 = G0 \ K̂.

Obviously, Ĝ1 b G1 for k̂ < k.

Lemma 3. Suppose that, in addition to the assumptions of Lemma 2, the
following inequalities hold in the domain G1:

|f0(x)| ≤ C0ρ
2π
ω
−2+ε, |fi(x)| ≤ C0ρ

2π
ω
−1+ε (i = 1 . . . , n),

and let f0(x) and fi(x) be continuous in G1, 0 < ε < s− π
ω
.

Then

|u1| ≤ C1ρ
2π
ω

+ε,

| grad u1(x)| ≤ Cρ
2π
ω
−1+ε

in Ĝ1.

The proof of Lemma 3 is the same as that in [4].

Remark 2. The proof of Theorem 1 is obtained on the basis of the above
assertions.
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