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CONTINUOUS TRANSFORMATIONS OF DIFFERENTIAL
EQUATIONS WITH DELAYS

JAN ČERMÁK

Abstract. The aim of this paper is to find the class of continuous
pointwise transformations (as general as possible) in the framework
of which Kummer’s transformation z(t) = g(t)y(h(t)) represents the
most general pointwise transformation converting every linear homo-
geneous differential equation of the nth order into an equation of the
same type. Further, some forms of these equations having certain
subspaces of solutions aer cobstructed.

Let I = [a, b), J = [c, d) be intervals, where b, d may be infinite. Further,
let

t = f1(x, y), z = f2(x, y)

where (x, y) ∈ I ×R and denote by F = (f1, f2) a pointwise transformation
of I × R into U ⊂ R2.

In this article we shall study transformations F of a linear homogeneous
differential equation of the nth order with m delays

y(n)(x) +
n−1
∑

i=0

pi(x)y(i)(x) +
n−1
∑

i=0

m
∑

j=1

qij(x)y(i)(τj(x)) = 0 (1)

on [x0, b), where the initial set Ex0 = [a, x0], pi, qij , τj ∈ C0([x0, b)),
τj(x) < x on [x0, b), and qij 6≡ 0 on [x0, b) for a pair (i, j) (i = 0, . . . , n, j =
1, . . . , m). We wish to derive the form of such a transformation F which con-
verts (in the sense of a pointwise transformation of solutions) every equation
(1) into an equation of the same type, i.e.,

z(n)(t) +
n−1
∑

i=0

ri(t)z(i)(t) +
n−1
∑

i=0

m
∑

j=1

sij(t)z(i)(µj(t)) = 0 (2)
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on [t0, d), where Et0 = [c, t0], ri, sij , µj ∈ C0([t0, d)), µj(t) < t on [t0, d),
and sij 6≡ 0 on [t0, d) for a pair (i, j) (i = 0, . . . , n, j = 1, . . . , m). Notice that
solutions y(x) (resp. z(t)) of equation (1) (resp.(2)) are functions defined
on the whole I (resp.J) and the space of solutions of both equations has an
infinite dimension.

Next, let W (y1, . . . , yk)(x), where y1, . . . , yk ∈ Ck−1(I), be the Wronski
determinant of functions y1, . . . , yk at x ∈ I.

We denote the following hypotheses concerning F :
(H1) F is a Cn-diffeomorphism of I × R onto J × R;
(H′

1) F is a homeomorphism of I × R onto J × R;
(H2) for every equation (1) there exists an equation (2) such that F con-
verts, pointwise,

(i) every nontrivial solution y(x) of (1) into a nontrivial solution z(t)
of (2);

(i′) every nontrivial solution y(x) of (1) into a Cn function z(t) defined
on J ;

(ii) every k-tuple y1, . . . , yk of solutions of (1) satisfying W (y1, . . . , yk)(x)
6= 0 on I into a k-tuple z1, . . . , zk of solutions of (2) satisfying W (z1, . . . , zk)(t)
6= 0 on J , where k ∈ {2, . . . , n + 1} is a suitable number;

(iii) every function y ◦ τj , where y is a solution of (1), into a function
z ◦ µj , where z is a solution of (2) (j = 1, . . . , m).

Assuming qij ≡ 0 on [x0, b) for each pair (i, j) in (1) we obtain a differen-
tial equation without any delay. The problem of the most general pointwise
transformation converting any such equation (1) into an equation (2) (with
sij ≡ 0 on [t0, d)) was first solved by P.Stäckel in [1]. He proved that under
hypotheses (H1) and (H2)(i) F has the form

t = f(x), z = g(t)y for n ≥ 2 t = f(x), z = g(t)yλ, λ > 0 for n = 1

where f is a Cn-diffeomorphism of I onto J , g ∈ Cn(J), g(t) 6= 0 on J . Re-
cently M.Čadek has shown (see [2]) that the assumption of differentiability
of F is not necessary and the form of F remains preserved also under (H′

1),
(H2)(i′), and (H2)(ii), where k = n (for more details see [3]).

Provided qij 6≡ 0 on [x0, b) for a pair (i, j) V.Tryhuk proved in [4] that
assuming (H1), (H2)(i), and (H2)(iii), F has the form t = f(x), z = g(t)y
with g and f having the same properties as above and, moreover, f ′(x) > 0
on I and f ◦ τj = µj ◦ f on I for j = 1, . . . ,m. The aim of this paper
is to weaken the assumption of differentiability of F as M.Čadek did for
equations without delays.

Proposition 1. Let hypotheses (H′
1) and (H2)(i′) be fulfilled. Then f1

is a homeomorphism between I and J not depending on y.
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Proof. Suppose on the contrary that there exist t∗0 ∈ J , z1, z2 ∈ R such
that

(x1, y1) = F−1(t∗0, z1), (x2, y2) = F−1(t∗0, z2),

where x1 6= x2. Choose x0 ∈ I, x0 > max(x1, x2) and let y ∈ Cn(I) be a
function such that y(xi) = yi (i = 1, 2) and y(x) 6= 0 on [x0, b). Now we
can define τ [x0, b)

onto−−−→ I as an arbitrary continuously increasing function
satisfying τ(x) < x on [x0, b) and denote V := τ−1([a, x0]). Then put

p(x) = − 1
y(x)

(q(x)y(τ(x)) + y(n)(x)) on V

where q is an arbitrary continuous function on V and

q(x) = − 1
y(τ(x))

(p(x)y(x) + y(n)(x)) on [x0, b)− V

where p is an arbitrary continuous function on [x0, b) − V satisfying
lim

x→τ−1(x0)
p(x) = p(τ−1(x0)).

Thus p, q are well-defined continuous functions on [x0, b) and y is a
solution of the equation

y(n)(x) + p(x)y(x) + q(x)y(τ(x)) = 0 on[x0, b).

This contradicts the hypothesis (H2)(i′) because the image of the function
y(x) is not a function.

Notation. Put h := f−1
1 , g(t, y(h(t)) := f2(h(t), y(h(t)). Then a trans-

formation F converting a solution y(x) into a solution z(t) can be rewritten
as

z(t) = g(t, y(h(t)). (3)

Proposition 2. Let transformation (3) satisfy (H2)(iii). Then
(a) µj(t) = h−1(τj(h(t)) on [t0, d) (j = 1, . . . , m);
(b) if lim

x→b−
τj(x) = b, then lim

t→d−
µj(t) = d (j = 1, . . . ,m);

(c) h is an increasing homeomorphism between J and I.

Proof. The pointwise transformation (3) converts y(τj(x)) into z(µj(t)), i.e.,

g(µj(t), y(h(µj(t))) = z(µj(t)) = g(h−1(τj(h(t)), τj(h(t))),

which implies (a).
Further, if lim

x→b−
τj(x) = b, then lim

t→d−
h−1(τj(h(t)) = lim

x→b−
h−1(x) = d.

Finally, µj(t) < t and h(µj(t)) = τj(h(t)) < h(t) holds for all t ∈ J , hence
h, being a homeomorphism, is an increasing one.
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Lemma. Consider y1, . . . , yk ∈ Cn(I) for some k ∈ {1, . . . , n + 1} such
that W (y1, . . . , yk)(x) 6= 0 on I. Then there exists an equation (1) having
y1, . . . , yk as a k-tuple of linearly independent solutions.

Proof. First let 1 ≤ k ≤ n. Suppose that there exists i ∈ {1, . . . , k} and
x0 ∈ I such that y(n)

i (x0) 6= 0. Define τ : [x0, b)
onto−−−→ I as an arbitrary

continuous function satisfying τ(x) < x on [x0, b) and consider the following
linear system for unknown functions qj(x) in the form

k−1
∑

j=0

y(j)
l (τ(x))qj(x) = −y(n)

l (x),

where 1 ≤ l ≤ k, x ∈ [x0, b). The matrix of this system is regular for every
x ∈ [x0, b) because W (y1, . . . , yk)(x) 6= 0 on I. Hence, the system has a
unique solution q0(x), . . . , qk−1(x) continuous on [x0, b) and, moreover, the
relation y(n)

i 6≡ 0 implies qj 6≡ 0 on I for some j ∈ {0, 1, . . . , k − 1}. Thus
we get that y1, . . . , yk are solutions of an equation with a delay τ

y(n)(x) +
k−1
∑

j=0

qj(x)y(j)(τ(x)) = 0 on [x0, b).

If y(n)
i ≡ 0 on I for every 1 ≤ i ≤ k, then the k-tuple y1, . . . , yk obviously

satisfies the equation

y(n)(x) + y(n−1)(x)− y(n−1)(τ(x)) = 0 on [x0, b)

for every x0 ∈ I and any suitable delay τ .
Now consider the case k = n + 1. Introduce the system of functions

{fx, x ∈ I} by the relation

fx(u) := c1(x)y1(u) + ... + cn+1(x)yn+1(u), u ∈ I,

where

ci(x) = (−1)n+i−1 det























y1(x) y′1(x) . . . y(n−1)
1 (x)

...
...

...
...

yi−1(x) y′i−1(x) . . . y(n−1)
i−1 (x)

yi+1(x) y′i+1(x) . . . y(n−1)
i+1 (x)

...
...

...
...

yn+1(x) y′n+1(x) . . . y(n−1)
n+1 (x)























(i = 1, . . . , n + 1). Note that for every x ∈ I there exists i ∈ {1, . . . , k} such
that ci(x) 6= 0 and denote Vx := {u ∈ I, fx(u) = 0} for x ∈ I. We show
that Vx has no accumulation point for any x ∈ I.
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Let um, u∗ ∈ Vx for some x ∈ I such that um → u∗. Then fx(um) =
fx(u∗) = 0 and with respect to Rolle’s theorem we get

fx(u∗) =
dfx

du
(u∗) = ... =

dnfx

dun (u∗) = 0

what contradicts the assumption W (y1, . . . , yn+1)(u∗) 6= 0.
Further, choose x0 ∈ I, x0 > a, such that a /∈ Vx0 and introduce a

continuous function τ : [x0, b) → I fulfilling τ(x0) = a, τ(x) < x and
τ(x) /∈ Vx for every x ∈ [x0, b). This is possible because Vx consists of only
a finite number of points in [a, x]. Now consider the system with unknown
functions pi(x), q(x)

n−1
∑

i=0

y(i)
l (x)pi(x) + yl(τ(x))q(x) = −y(n)

l (x),

where 1 ≤ l ≤ n + 1 and x ∈ [x0, b). Since

Wτ (y1, . . . , yn+1)(x) :=

= det









y1(x) . . . y(n−1)
1 (x) y1(τ(x))

...
...

...
...

yn+1(x) . . . y(n−1)
n+1 (x) yn+1(τ(x))









= fx(τ(x)) 6= 0

on [x0, b), the considered system has uniquely determined solutions pi(x),
q(x) continuous on [x0, b) and, moreover,

q(x) = − W (y1, . . . , yn+1)(x)
Wτ (y1, . . . , yn+1)(x)

6= 0 on [x0, b).

From here we get that functions y1, . . . , yn+1 form linearly independent
solutions of the equation

y(n)(x) +
n−1
∑

i=0

pi(x)y(i)(x) + q(x)y(τ(x)) = 0 on [x0, b). (4)

Consequence. Consider y1, y2 ∈ C1(I), W (y1, y2)(x) 6= 0 on I and
let Vx = {u ∈ I, y1(x)y2(u) − y2(x)y1(u) = 0} for every x ∈ I. Choose
x0 ∈ I, x0 > a, and suppose that τ : [x0, b)

onto−−−→ I is a continuous function
satisfying τ(x) < x on [x0, b). Then y1, y2 are solutions of the equation

y′(x) + p(x)y(x) + q(x)y(τ(x)) = 0 on [x0, b) (5)

if and only if τ(x) /∈ Vx for every x ∈ [x0, b). Moreover, τ with such a
property always exists and the functions p, q are then uniquely determined
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by the relations

p(x) =
y1(τ(x))y′2(x)− y2(τ(x))y′1(x)
y1(x)y2(τ(x))− y2(x)y1(τ(x))

on I,

q(x) =
y′1(x)y2(x)− y1(x)y′2(x)

y1(x)y2(τ(x))− y2(x)y1(τ(x))
on I.

Proof. The system

yl(x)p(x) + yl(τ(x))q(x) = −y′l(x), l = 1, 2, on [x0, b),

has (necessarily unique) continuous solution p(x), q(x) if and only if
y1(x)y2(τ(x)) − y2(x)y1(τ(x)) 6= 0 for every x ∈ [x0, b), i.e., τ(x) /∈ Vx

for every x ∈ [x0, b). Since the form of equation (4) agrees with the form
of (5) for n = 1, the existence of a suitable τ follows from the previous
Lemma.

Example. Consider the functions y1(x) = 1, y2(x) = x with the nonzero
Wronski determinant on an interval I. Then Vx = {x} and according to the
previous statement all the equations (5) having prescribed functions 1, x as
solutions are of the form

y′(x) +
1

x− τ(x)
y(x)− 1

x− τ(x)
y(τ(x)) = 0 on [x0, b),

where τ is any continuous delay mapping [x0, b) onto I.
On the other hand, it is easy to see that some k-tuples of functions with

a nonzero Wronski determinant on I are not solutions of any equation (5)
for k ≥ 3. For example, functions 1, x, x2 have this property because the
function y(x) = x2 does not satisfy the previous equation. Of course, they
can be solutions of an equation of the first order with more delays, e.g.,

y′(x)− τ1 + τ2

τ1τ2
y(x)− τ2

τ1(τ1 − τ2)
y(x− τ1) +

τ1

τ2(τ1 − τ2)
y(x− τ2) = 0,

where τ1, τ2 > 0, τ1 6= τ2.

Theorem. Let the hypotheses (H′
1), (H2)(i′), (ii), (iii) be fulfilled. Then

transformation (3) has the form

z(t) = g(t)y(h(t)), (3′)

where g ∈ Cn(J), g(t) 6= 0 on J , h is a Cn-diffeomorphism of J onto I,
h′(t) > 0 on J and τj(h(t)) = h(µj(t)) on J (j = 1, . . . , m).

Proof. According to the main result in [4] this statement holds under (H1)
and (H2)(i), (iii). Transformation (3′) obviously satisfies (H2)(ii) as well
because of the formula

W (z1, . . . , zk)(t) = (g(t))k(h′(t))
k(k−1)

2 W (y1, . . . , yk)(h(t))
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(see [5]). We show that by weakening the assumptions (H1) and (H2)(i) to
(H′

1) and (H2)(i′) the class of transformations does not become larger.
Let the hypothesis (H2)(ii) hold for a fixed k ∈ {2, . . . , n + 1}. Consider

a linear differential equation of the kth order without a delay in the form

y(k)(x) + ak−1(x)y(k−1)(x) + ... + a0(x) = 0 on I, (1′)

where ai(x) ∈ Cn−k(I) (if k = n+1 then ai(x) ∈ C0(I)), and let y1, . . . , yk ∈
Cn(I) be a k-tuple of linearly independent solutions of (1′). According to
the previous lemma there exists an equation (1) such that y1, . . . , yk are its
solutions. Let transformation (3) convert equation (1) into an equation (2)
and denote zi(t) = g(t, yi(h(t)) (i = 1, . . . , k). Then with respect to (H2)(ii)
we get that z1, . . . , zk ∈ Cn(J) are solutions of (2) and W (z1, . . . , zk)(t) 6= 0
on J ; hence there exists an equation

z(k)(t) + bk−1(t)z(k−1)(t) + ... + b0(t) = 0 on J (2′)

having z1, . . . , zk as a fundamental system of solutions. Since equation (1′)
can be arbitrarily chosen, Čadek’s result [2] shows that such a transfor-
mation has the form (3′), where g ∈ Cn(J), g(t) 6= 0 on J , and h is a
Cn-diffeomorphism of J on I. The remaining properties of h follow from
Proposition 2.

Remark 1. Assuming that the hypothesis (H2)(ii) is fulfilled for k = 1
we obtain transformation (3) in the form z(t) = g(t)yλ(h(t)), λ > 0, which
does not agree with the form we wish to have.

Remark 2. We cannot represent each equation (1) by the space of its
solutions as is possible for linear homogeneous equations without delays.
Consider, e.g., all functions defined by the relation

y(x) =



















ϕ(x) for x ∈ [0, 1],
ϕ(1) for x ∈ [1, 2],
ϕ(1)(3− x− sin 2πx

2π ) for x ∈ [2, 3],
0 for x ≥ 3,

where ϕ is any continuous function defined on [0, 1] (cf. [6]). Then this set
forms the space of solutions of the equations

y′(x) + q(x)y(τ(x)) = 0 on [1,∞),

where

q(x) =

{

0 for x ∈ (2n− 1, 2n)
2(sin πx)2 for x ∈ [2n, 2n + 1]

and τ may be any continuous delay mapping every interval [n; n+1] onto [n−
1; n], n = 1, 2, . . . . That is the reason why we cannot omit the assumption
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(H2)(iii) if we wish to preserve the validity of the relation τj ◦ h = h ◦ µj
on J in the case of transformations of such an equation.
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