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BASIC BOUNDARY VALUE PROBLEMS OF
THERMOELASTICITY FOR ANISOTROPIC BODIES
WITH CUTS. 1

R. DUDUCHAVA, D. NATROSHVILI, AND E. SHARGORODSKY

ABSTRACT. The three-dimensional problems of the mathematical the-
ory of thermoelasticity are considered for homogeneous anisotropic
bodies with cuts. It is assumed that the two-dimensional surface of a
cut is a smooth manifold of an arbitrary configuration with a smooth
boundary. The existence and uniqueness theorems for boundary value
problems of statics and pseudo-oscillations are proved in the Besov
(Bj ;) and Bessel-potential (H3 ) spaces by means of the classical
potential methods and the theory of pseudodifferential equations on
manifolds with boundary. Using the embedding theorems, it is proved
that the solutions of the considered problems are Holder continuous.
It is shown that the displacement vector and the temperature distri-
bution function are C*-regular with any exponent o < 1/2.

This paper consists of two parts. In this part all the principal
results are formulated. The forthcoming second part will deal with
the auxiliary results and proofs.

INTRODUCTION

Three-dimensional crack problems evoke much interest in engineering
applications. In this paper we investigate the three-dimensional boundary
value problems (BVPs) of thermoelasticity in certain function spaces when
the anisotropic elastic body under consideration contains any number of
nonintersecting cuts in the form of two-dimensional smooth surfaces with
smooth boundaries.

For domains bounded by smooth closed manifolds of the class C?*” the
basic BVPs were completely investigated using the potential method by
V. D. Kupradze and his collaborators [1] in the isotropic case and by D. Nat-
roshvili [2] in the anisotropic case.

1991 Mathematics Subject Classification. 35C15, 35515, 73M25.
Key words and phrases. Thermoelasticity, anisotropic bodies, cuts, potentials, pseu-
dodifferential equations, boundary integral equations..

123
1072-947X/95/0300-0123$07.50/0 © 1995 Plenum Publishing Corporation



124 R. DUDUCHAVA, D. NATROSHVILI, AND E. SHARGORODSKY

Analogous three-dimensional crack problems of classical elasticity for
isotropic bodies were treated in the Bessel-potential spaces Hf by M. Costa-
bel and E. Stephan in [3]. The BVPs for homogeneous anisotropic bod-
ies were studied in the Besov (B ) and Bessel-potential (HJ) spaces by
R. Duduchava and collaborators in [4] who established more precise re-
sults on the regularity of solutions (C*-regularity with o < 1/2). Each of
the quoted papers contains an ample bibliography to the above-mentioned
problems.

To illustrate our approach we consider two basic BVPs for an infinite do-
main. All the results obtained here remain valid (with minor modifications)
for a bounded domain with interior cuts, i.e., when the cut surface does not
touch the domain boundary.

This paper consists of two parts. The first part contains three sections.

In the first section we formulate the problems and introduce the spaces
of functions and distributions needed for proving the unique solvability of
the problems and, further on, the regularity properties of solutions.

In the second section we show the mapping properties of single- and
double-layer potentials of thermoelasticity (both on the surface and from
the surface to the space; see Theorems 2 and 4) and derive the integral
representations of regular solutions.

The third section contains the formulations of the main theorems of the
paper, concerning the existence and uniqueness of solutions of the problems
discussed in the first section, the regularity of such solutions, and the explicit
solvability properties of the corresponding boundary integral equations (see
Theorems 5-9).

The proofs of Theorems 7 and 8 will be given in the forthcoming second
part of the paper after recalling some auxiliary results.

§ 1. FORMULATION OF THE PROBLEMS

Let QO be a bounded domain in R? with the smooth boundary Q% = %
and S be the connected part of ¥ with the smooth boundary curve 05 =
¢ # @. Then S is a two-dimensional surface of an arbitrary configuration
with the boundary £. It is assumed that Q~ := R3\QT, where Ot = QT UY,
R} =R\S and S = SUZL.

Let RY be filled with some homogeneous anisotropic elastic material ha-
ving density p, elastic coefficients

Ckipg = Cpakj = Cjkpq> (1.1)
heat conductivity coefficients

and thermal capacity cg.
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In what follows R% is treated as an infinite elastic body with a cut along
the surface S. For simplicity ¥, S and ¢ will further be assumed to be
C*>-regular.

By u = (u1,u2,us) and us we denote the displacement vector field and the
temperature field, respectively. The components of the thermal stress vector
calculated on a surface element with the unit normal vector n = (n1,n2,n3)

have the form
[P(Dz,n)U]g := [T(Dg,n)uly — Brjnjue, k=1,2,3,

where U = (u1,ug, us, us), [T(Dy,n)ulr = cijpgn;Dyup are the compo-
nents of the classical stress vector, D, := (D1, D2, D3), D, = 0/0x,, and
the constants 3;; = B;; are expressed in terms of the thermal and the elastic
constants (cf. [5]). Here and in what follows, summation from 1 to 3 over
repeated indices is meant.

The strain tensor components ej; are defined by the formulas

1 .
erj = g(Djuk + Dyuy), k,j=1,2,3,
while the stress tensor components are related to ey; as follows (Hooke’s
law):
Thj = Chjpa®pq = CkipgDplq:
Potential energy in classical elasticity reads
2W = ekjThj = CkjpqChjCpq-

From the physical standpoint, potential energy is assumed to be a positive
definite quadratic form with respect to the variables ey; = ej:

2W > deyjer;, O = const > 0. (1.3)

Combining the static and the pseudo-oscillation cases, we consider the
following system of equations of thermoelasticity:

A(D,,7)U(x) = F(z,7), =z € Rg, (1.4)

where F = (F,...,Fy) is a given vector with a compact support, I, =
10kl mxm is the unit matrix,

—b1;D;
C(D) — pr°13 —B2; D
—P3;D; ’
Oélij7 OéQij, Oéngj, A(D) — CoT
C(D) = |Crp(D)l3xz;  Crp(D) = rjpgDj Dy
A(D) = quDqu7 Ak = _TTOBkja (16)

A‘(DﬂT):

4x4
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To = const > 0 is a temperature of the medium in the natural state (cf.
[5]), 7 = 0 +iw; T = 0 corresponds to the static case, while 7 = o + iw,
o > oo > 0 corresponds to the pseudo-oscillation case (equation (1.4) is
obtained from the dynamic equations of thermoelasticity upon applying the
Laplace transform).

Treating S as a double-sided surface, we consider two basic BVPs for
equation (1.4) with a Dirichlet type boundary condition

[U()]* = ¢*(2,7), w€S, (1.7)
and with a Neumann type boundary condition
[B(D,,n(x))U(z)]* == (z,7), z€8, (1.8)

where the symbol []* denotes the limiting value on S of a function (vector)
from QF, n(x) is the unit normal at z € S outward with respect to Q7

ot = (<p1i, ce gajf) and YT = (wf[, cee wjf) are the known vector-functions,
—Pjn;(x)
T(Dg,n(x)) —0an,(x)

B(D,, = 7 , 1.9

( n(x)) 753jnj(x) (1.9)

0, 0, 0, Apgnp(x)D, Axd
T(Dy,n(x)) := | Tip(Dasn(z))ll3x3,  Thp(Dasn(2)) = crjpgny(x) Dy

In problems (1.7) and (1.8) it is required that

o(1) for 7 =0,
- k=1,2,3,4, 1.10
ur(®) {O(a:|N) for ReT > 0, (1.10)

for a sufficiently large |z| and some positive number N.
These conditions imply (see [6], [7])

D%uy(z) =

{0(|x|—1—la) for 7 = 0, 111)

O(lz|™") for Ret > 0,

as |x| — oo, where « is an arbitrary multi-index, |a] = a; + as + a3, and v
is an arbitrary positive number.

The symmetry properties of coefficients (1.1) and the positive definiteness
of the energy quadratic form (1.3) imply that the operator C(D) defined by
(1.6) is a formally self-adjoint strongly elliptic matrix differential operator
(see [3])

Re (C(é)nﬂ?) = (C(§)77777) = Ckjpe€i&eMpTk = 50|§|2|77‘2a

1.12
S0 =const >0, £cR3 neC? ( )
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where C? is the three-dimensional complex Euclidean space, the bar desig-
nates complex conjugation, and (a, b) = ab = axby, for a,b € C3.

In contrast to C(D) the operator A(D,7) is elliptic but not self-adjoint.
Denote by A*(D, 1) the operator formally adjoint to A(D, 7). It is obvious
that

A*(D,7) = AT(-D,7), (1.13)

where the superscript T' denotes the transposition operator.
Note that the quadratic form A (&) defined by (1.6) is also positive definite
(see [5]),

A(E) = M\pgbply > 011€17, € €R? &y = const > 0. (1.14)

A function f : QF — R! is said to be regular in QF if f € C?2(Q*) N
CHQ*). A vector v = (v1,...,0p,) (matrix A = [[@g;lmxm) is said to be
regular in Q7F if all its components (entries) are regular functions in Q*. In
general, v € P (A € P) means that all components of v (all entries of A)
belong to the space P.

Let C*+7(Q%), where k > 0 is an integer and 0 < v < 1, denote the
space of functions u defined on QF whose derivatives D®u of order |a| = k
are Holder continuous with the exponent v. The space Ck*7(X) is defined
similarly (cf., for example, [1]).

Assume that U = (uy,...,uq) and V = (v1,...,v4) are the regular vec-
tors in QF satisfying the conditions AU, A*V € L;(Q%) and (1.11). Then
we have (see [2])

(AU,V)dx = £ | (BUJ,[V]F)dS — [ E(U,V)dx, (1.15)
Jowvyies | 5
/{AUV (U, AV)}d = + /{BU 1) ds —

- (U, [Q aQ;}clS, (1.16)
QZ {(AU), T + %(H)4U4}dx - —QZ {cijleluijm +

+ pT UL UL + )\”D usD;uyg + ? u4U4}dx +

+ / {[BU]k[Uk] +;TO[U4] [a%m} Las, (1.17)

N+
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where

E(U7 V) = ijququDjﬁk + p7'2ukm — ﬂkPU4Dqu +

+ )\quqU4Dp54 + coTU4V4 + TToﬁqupupﬁzl, (118)
0
B T Apgnp(2) Dgua(z),
Tm’ﬁljnj (m)
T(D.,n(x)) TorB2n;(x)
DZ’? = ’ 77
Q( n(z)) TorBa;m;(x)

0, 0, 0, Apgnp(x)D

q1l4x4

In what follows the BVPs (1.7) and (1.8) will be investigated in different
functional spaces.

To formulate these problems in exact terms we need the Sobolev W’;(R3),
W’;(Q), W’;(E), Sobolev-Slobodecky W (R?), W5 (Q2), W5(X), the Bessel-
potential H3(R?), H3(Q), H5(X), and the Besov B  (R?), BS (), B} ,(%)
spaces (k =0,1,2,..., —c0o < s < 00, 1 <p < 00,1 < ¢q < o0). For the
definitions of these spaces see [9].

Let X(R?) be one of the above-mentioned function spaces. For an ar-
bitrary unbounded domain Q= C R3 (with a smooth boundary 9Q7~) we
denote by Xj,.(27) the subset of distributions ¢ € D'(27) with

blo- €X(QR), Qp={reQ:|e]<R}, VR>0,

and by Xcomp(27) the set of functions ¢ € X(7) with compact supports.

Xioc(R%) denotes the subset of distributions ¢ € D'(R%) satisfying the
conditions

¢lor €X(QY), ¢l €X(Qr), Qr={zecR\QY, 2| <R},

for an arbitrary R > 0 and any bounded domain Q% with S C 9Q7; here
¢|q is the restriction to .

In particular, W}, ; .(R%) denotes the Sobolev space of functions ¢ on R
which are p-integrable on Q\S for each compact domain Q C R3 together

with their generalized derivatives of order 1

sy @) = { [ (el +ve@P)ar} " < oc,
Q\s
Vg := (D1p, D2, D3p).
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For the open surface S C ¥ the spaces H (S), ]ﬁl;(S) are defined as

H,(S) = {rsf : feH,(X)},
IF]I;(S) ={feH,(X) : supp f C S} C H,(%),

where rgf = f|s is the restriction.

The spaces B, ,(S) and I@;q(S ) are defined similarly. Note that Hj =
W5 = Bs,, W =B}, and HE = W¥ hold for any —oo < s < oo, for any
positive and non-integer ¢, and for any non-negative integer k =0,1,2,...,
respectively.

In contrast to closed surfaces, even for infinitely smooth S, ¢, p*, and ¢+
the solutions of problems {(1.4), FF =0, (1.7)} and {(1.4), F =0, (1.8)}
have in general no C*-smoothness with o > 1/2 in the vicinity of £ = 95
but are infinitely differentiable elsewhere.

Hence we seek solutions of the BVPs (1.7) and (1.8) from the Sobolev
space W), ;,.(R%) provided that

Pt eBVP(S), o =pt—p €BP(S) (1.19)
for the Dirichlet type problem (1.7) and
YE e B, /P(S), v =yt -y €B,}/7(S) (1.20)

for the Neumann type problem (1.8).

Further the problems {(1.4), F =0, (1.7), (1.10), (1.19)} and {(1.4),
F =0, (1.8), (1.10), (1.20)} will be referred to as Problem D and Problem
N, respectively. Note that property (1.11) holds for solutions of Problems
D and N as well.

For s > 1/p by the trace theorem (see [9], Theorem 3.3.3) we have

gt €BILVP(S) if g€ H,, (RE) UW; ,, (RE),
gt eBP(S) it geBS . (RY).

p,q,loc

(1.21)

Therefore (1.7) and (1.19) are compatible and correctly defined if U €
Wzla,locGR%)'

As to (1.8), (1.20), we should give some additional explanation, since
DUy, € Ly 10c(R%) = W) ;,.(R%) and they have no traces on S in general.

We can make condition (1.8) meaningful for U € W;,ZOC(R%) with AU €

L, 10c(R%) using equality (1.15). Indeed, it can be rewritten as
(B(Dg,n(2))U]", Vs =

/(A(D)U,V)d:c+/E(U,V) dz, (1.22)
Q+ Qt
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for U € WH(QF), AU € L, (27), vV € W1, (Q);

([B(Dm,n(x))U]_,V_>E:—/(A(D)U, V)dx—/E(U, V)dz, (1.23)
Q- Q-
for UEW}?JOC(Q_), AUEeL,(927), VVEW;,’Comp(Q_). Here p’ =p/(p—1)

and (-, -)x defines the duality between B;,}/p@) and IB%;,/Q(Z) given by

(fro)s = [ fgdS
/

for the smooth functions f and g.

Relations (1.22) and (1.23) define [B(D,n(z))U]* € IB;,I,/p(S) correctly,
since by virtue of (1.21) their right-hand side expressions exist for any V €
W, (QF) and V € W (), respectively, and V* € B/?,(S).

p’,comp

§ 2. PROPERTIES OF FUNDAMENTAL SOLUTIONS AND POTENTIALS

By A(&, 7) denote the symbol matrix of the operator A(D,, ) (see (1.5)).
Obviously,

A(fa T) = A(*Zf’ 7_)
and the matrix distribution
O(x,7) = (27T)73/67i57./471(§,7) d¢ (2.1)
RS
represents the fundamental matrix of the operator A(D,,7), i.e.,
A(D,, 7)®(x,7) = 6(x)1y

where 6(+) is the Dirac distribution. The fundamental matrix of the formally
adjoint operator reads

&% (z,7) = 0T (—x, 7). (2.2)

The entries of these matrices are of the class C°°(R3\{0}) and for
Re7 > 0 they, together with all their derivatives, decay faster than any
negative power of |z| at infinity. For 7 = 0 we have

D®y;(x,0) = O(|x\_1_‘o‘|) as |z| — oo

(see [2]).
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Near the origin the main singular parts of the matrices ®(z,7) and
®*(x,7) coincide and have the form (see [2], [10])

, (2.3)

4x4

where I'(+) is the fundamental matrix of the classical operator C(D) while
v(+) is the fundamental function of the operator A(D)

P(z) = (2m) 3 / 701 (¢) dE = (8n%]a])! / Y (af) do,

R3 0
C() = [lcnipa(—is)(—i€q) 3 o
3w) = (2m)73 [e A i) dg = —{ar| 2L ) ),

RB
A(ﬁ) = )\pnggp

(see [11]) with 77 = (cosp,sing,0), L = ||Apqllsxs, |L| = det L; here a =
lla;kllsx3 is an orthogonal matrix with the property a”z = (0,0, |z]).
It is evident that the equalities

O(tr) =t 1®(z), @(z) =T (z) = (—x) (2.5)
hold for any positive ¢t > 0. Near the origin ®;(x,7) has the asymptotics

O(In|z|), ifa=0,

O(|z|~1ehy, if |a| > 0. (2:6)

D [@pj(z,7) — Ppj(x)] = {
The properties of generalized potentials corresponding to these matrices
in the case of closed surfaces were studied in [2], [10]. Due to these results
from now on we shall assume without loss of generality that F' = 0 in
(1.4), as the particular solution of (1.4) can be written explicitly using the
generalized Newtonian potentials (see, for example, [12]).
On account of (1.16) we obtain the following integral representation of a
regular vector:

/ (x — . 7)A(Dy, 7)U (y) dy £ / {[Q(Dy, n(y) @7 (z — 3, 7))
Qw BIOE=
X[U(y)]* = (- y,7)[B(Dy,n(y))U(y)] " }d,S =
_JU®@®), ze0f
B {0, z e QF. 27)
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We introduce the generalized single- and double-layer potentials

Pamwzi/@@—ymmww@& (2.8)
>
I%g@)?Z/KMDwn@D@Ux*yﬂﬂTﬂwdﬁi (2.9)

r € R =R3\X,

which are the solutions of the homogeneous equation (1.4), i.e., for F' = 0.
The same notation will be used for the direct values of PLg(z), z € ¥
( = 1,2). Note in this connection that for x € 3 integral (2.9) exists only
in the sense of the Cauchy principal value, while (2.8) exists as a usual
improper integral (see [2]). In a similar manner we define

:/Bﬂkmwﬂﬂm—%ﬂﬂw%S (2.10)

for x € RY and z € ¥; here n(z) is the C§°-extension of the exterior unit
normal vector from ¥ onto R3.

Lemma 1. The equalities

[PLg)*(z) = £59(x) + PEg(x), k=0, (2.11)
[B(Ds,n(2))Pyg)™(x) = F39 + Pg(), k>0, (2.12)
[Prg]* () = [Pyg]~ () = Pyg(z), k=0, (2.13)
[B(Da,n(2)PEgl* () = [B(Dy, n(x))PSg) ™ (2) =

= ng(a:)7 k>1, (2.14)

are fulfilled for any g € Ck*7(X), 0 <y <1 and z € 3.
The operators

+

P : CHI(D) - CHEIH(QT), j=1,2, (2.15)
P : CH(D) - CH2I (D), j=1,2, (2.16)
Pl . CF(D) — CFY (D), (2.17)
Py . CHIPY(D) - ORI (D) (2.18)

are bounded for 0 < v <1 and any integer k > 0.

We retain notation of type (2.8)—(2.10) and (2.14) for the potentials and
the corresponding operators when the closed surface X is replaced by the
open surface S. The potentials P7 possess essentially different properties
and require an especially careful approach.
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Theorem 2. Let s € R, 1 <p < oo, 1 <q<oo. PL, PZ, PY and P§
are the pseudodifferential operators of orders —1, 0, 0 and 1, respectively.
The following operators are bounded (cf. (2.15)—(2.18)):

Py HY(Z) — H3PH(D),

PL B, (D) — By (2), (219)
P%, P, ;H;( ) — HE (%), (2.20)
P P3 s (D) = B (), '

Hs+ (5) = Hy(>) (2.21)

]B%S“(E) — B (%),

Proof. The first claim of the theorem is proved in [13], while the other
follows from the well-known properties of the boundedness of pseudodiffe-
rential operators (see, for example, [14]). O

Let Xy be an m-dimensional C'°°-smooth compact manifold without
boundary and embedded in R™ (n > m). Consider the distribution v x ds, €
S/(R™) defined by the formula

(v % b5,,0) = (v, 0] ), ¢ €SR™Y), (2.22)

for any v € Hy (X0) (v € B; ,(X0), 1 <p < o0, 1< g < 00).
The above definition is correct, since the restriction ¢|s, € C*(X)).

Lemma 3. Let v € B, (%), (v € B, (30)), 1 <p < oo, 1<q< o0,

e TR, o = pl(p—1).

7 7

5 < 0. ThenvxézoeH; 7 (R™) (vxdx, GBIS?:I !

Proof. Applying the trace theorem (see [9], Theorem 3.3.3), we conclude

—s+ I —s+ 25
that any function ¢ from H,,  * (R") (from B, , * (R")) has the trace
Yls, €B,°% (Yls, €B,°,(X0)). Hence, by virtue of definition (2.22), v x

n—m n—m
7 7

—s+ —s5+
ds, represents a bounded functional on H, * (R") (on B, , * (R"),
1 < g < 00) and by the duality property (see [9], Theorem 2.11.1) we get
the proof for 1 < g < oco.

For ¢ = 1,00 the proof is accomplished by interpolation (see [9], Theo-
rem 3.3.6). O
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Theorem 4. Let s e R, 1 < p < oo, 1< q< o0, j=1,2. Then the
operators

PJE . (E) - Hs+2 j+1/p(Q+) N COO(Q+), (2 23)
PL :B; () — Byt 27 H/P(Qt) n o= (QF), '
PL: By, (X) — Hy oo TP (@) n e (@), 020
Pl By, (2) — By @) nex (@)

are bounded and for these extended operators formulas (2.11)—(2.14) remain
valid in the corresponding spaces.
Representation (2.7) holds for U € W}

S 10e(2F) if, in addition, A(Dy,7)U
=0 in QF.

Proof. Let us first consider Py and s < 0. Assume that ¢ € C§°(R?),
p(§) =1for [§] < 1. If g € By ,(¥) (g9 €B; (X)), we have
Prg=®x(gxdp)=-F AT F(gx o) =
FATHON - 91 F (g x 0n) —
FLAT Oe()F (9 x 0n) = Pyg+ Pyog,  (225)

where F (F~1) is the direct (inverse) Fourier transform.

From Lemma 3 it follows that gxdy, € H,~ i (R3) (gx6s € Bpg i (R?)).
Applying the theorem on the boundedness of pseudodlfferentlal operators
(see [14]), we obtain

P} ,g € HEPIPUP(RS)  (PL g € B IT/P(RY)). (2.26)
For the second summand in (2.25) we have
Pyog=—F AN OF[F Hp(&)F (g x bx))] =
= F AV Ff =0« f with f=F 1pF(gxdx). (2.27)

Since the pseudodifferential operator F~'pF is of order —oo, we have
f € C>(R?) and therefore (see (2.27))

A(Dy)Py 59 = A(Dy)(® x f) = (A(Dy)®) x f =6+ f = f. (2.28)

Thus P12’2 g is the solution of an elliptic system with an infinitely smooth
right-hand side. Therefore Py, ,g € C™(R?) (see, for example, [15], Chap-
ter I, Corollary 4.1 or [16], Chapter IIT, Theorem 1.4).

For any g € B ,(¥) (g € B} ,(X) and any compact domain Q C R? we

obtain Plg € HS““/P(Q) (Plzg e B TP (Q).
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It should be noted that the convergence g, & g as n — oo implies
the convergence PLg, AN Pig (see [17, §7]). Therefore the graph of
the operator PL : BS (S) — Hy ™' "/P(Q) (PL : By (Z) — By /P ()
is closed. It remains for us to apply the closed graph theorem (see, for
example, [18, Theorem 2.15]).

Let us proceed to the case s > 0. Assume that s = m+1/p’,m=0,1,....
For a function g € By (X) we choose a sequence {gn}nen C B; (E) N
C'*2(X), € > 0, such that lim, . [|(9. — 9)|B; ,(X)]| = 0.

By Lemma 1 we have Pgg, € C**<(Q) C W2(Q) representing the solu-
tion of the boundary value problem
AD)U(z) =0, ze€Q, (2.29)

Uly, = Pxgnls, (2.30)

where
Egn|2 02+€ (2)
By Theorem 2 (see (2.19))

IPga By 5 (E)] < CligalB; (D), (2.31)

where C' = const is independent of g,,. Using the a priori estimates (see
[19], [20] or [21], Chapter V), we obtain Pgg,, € Wit2(Q) = HE P Q)
and

1P L [H T HP(@Q)]] < Cr(IPSgn |5 B35 (2)I] + [ PLgn Ly ()])-

D.p
The results proved above for s < 0 and the embedding theorem yield
IP5gn|Lp ()] < Callgn[B; o (D),

since g, € B, ¢(%) implies Pyg, € B ST (Q) C Ly(Q).
Taking into account (2.31), we arrive at

IPLga[H T H2(Q)] < Callgn[B; (D)1

(2.32)

A similar inequality holds for g, — gy, Therefore {PLg, }nen represents a

fundamental sequence in HSHH/ P(Q). From the proven part of the theorem

and the above embedding theorem we obtain

lim_[[(P5g — Pygn)|Ly ()] = 0.

Therefore Py,g € HZHH/’)(Q) and

IPLglHy P (Q)] < CollglB; (D)) (2.33)
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For P4, the proof is completed using interpolation (see [9]). For the ope-

rator P% the proof is similar, the only difference being that for s > 0 we

should begin with s = ﬁ + 1 instead of s = ; and apply (2.20). O

§ 3. MAIN THEOREMS

The next five theorems can be regarded as the main results of both parts
of this work. Two of them (Theorems 7 and 8) will be proved in §5.

Theorem 5. Let ot and o~ be given vector-functions satisfying (1.19).
Then U € nga,loc(Rg) is a solution of Problem D if and only if
U(z) = (P§¢")(z) — (Pyp)(z), z€RY, (3.1)

where @° = T —p~ € 18311,7/5/(5), while ¢ € @;;,/p(S) solves the system of
pseudodifferential equation

Psp=f on S, (3.2)
with

1 _
f=P% O—§(<P++<P )-

Proof. By Theorem 4 and formula (2.7) we obtain the following representa-
tion of an arbitrary solution U of the homogeneous equation (1.4), F' =0,

U(z), =€t

0, r e Qf, (3:3)

+{(PLU)(2) — (P£(BU)*)(x)} = {
which, upon taking the differences, yields (3.1) with ¢* = Ut — U~ and
o= (BU)T — (BU)™, if we take into account that

()t - (U)" =0, (BU)—(BU)" =0 on X\S.
Applying Theorem 4, from (3.1) it follows that

1
U* =25¢" + Pi¢’ — Py = p*

and, upon taking the sum U" + U™, we obtain equation (3.2). O

Theorem 6. Let 1 < p < oo and 9+ € B;;,/p(S), PO =yt —y~ €
B;;,/p(S) be given functions. Then U € W}Lloc
N if and only if

Uz) = (P§y)(x) — (Psy’)(2), = €RS, (3-4)
where 9 € @11;,/5(5) solves the pseudodifferential equation
Pl =g, (3.5)

(R%) is a solution of Problem
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where )
g= §(¢+ +97) + Py

Proof. The theorem is proved similarly to Theorem 5. We would like only to
note that if equation (3.5) has a solution, then ¢ and the boundary values
U# are related by the equality

v=UT-U"eBY/?(S). O
Theorem 7. (i) The operators
PL By (S) — BLEN(S), (3.6)
PL : HY(S) — HLH(S) (3.7)

are bounded for any 1 <p < oo, 1 <g<oo,veR;
(i) (3.6) is a Fredholm operator if the condition

1/p-3/2<v<l/p—1/2 (3.8)

is fulfilled;
(iii) (3.7) is a Fredholm operator if and only if condition (3.8) is fulfilled;
(iv) operators (3.6) and (3.7) are invertible for all v satisfying (3.8).

Theorem 8. (i) The operators
PLBLEY(S) — B, (S), (3.9)
Py HYTY(S) — HY(S) (3.10)

are bounded for any 1 <p < oo, 1 <g< oo, v ER;
(ii) (3.9) is a Fredholm operator if (3.8) is fulfiled;
(iii) (3.10) is a Fredholm operator if and only if (3.8) is fulfilled;
(iv) operators (3.9) and (3.10) are invertible for all v satisfying (3.8).

Let us assume that M is a smooth manifold with the boundary OM # &

ajld introduce the~notation HZO(J\{) = 2<pm<ooH;(M) = 2<£W<OO]B%%,(](M),
S -—— S — S o S — S
HE (M) = 2<£W<OO]HIP(M) = 2<p<oon’q(M)' Obviously, H2_ (M) = HE_ (M)

if —1/2<s<0.

Theorem 9. Let p* 67’(}42(5), ot —p~ Eﬁéﬁ(é’) and 1+ EHC;U?(S).
Then the solutions of Problems D and N are real analytic vectors in R%,
vanishing at infinity. For their restrictions to QF we have the inclusions
Uly. € HELTP(0F).

Therefore

Ue [ C*(RY),

a<l/2
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where
CURY) = {p : ¢ € C*(QF), ¢ (2) = ¢~ () if x € X\S}.

Proof. Assume that Theorems 7 and 8 are proved (see §5). Due to repre-

sentation (3.1) and (3.4) U(x) is a real analytic vector satisfying condition

(1.11) at infinity. For its traces we have U* € N H}D/Q(S). If we now
<p<oo

take a sufficiently large p, the proof will follow from Theorems 2 and 4 and
the well-known embedding

Hy(RS) C CY7H(R), n>3/p (3.11)
(see [9]). O

Theorem 9 implies that the traces U* on both faces of the crack surface S
belong to the Holder space qﬂC"‘ (SYand U*(z) =U~(z) forx € £ = DS.
a<

Remark 10. Operators (2.16) and (2.18) are invertible for any £ =0, 1, ...
and 0 <y <1if ReT >0 (see [2]).

Remark 11. Theorem 9 shows the advantage of considering equations
(3.2) and (3.5) in the spaces By ,(S) (or Hj;(S)) with p # 2, since if we
stick to the case p = 2, we shall not be able to obtain the above results on
smoothness for U|g+ and U*.
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