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ON SOME BOUNDARY VALUE PROBLEMS WITH
INTEGRAL CONDITIONS FOR FUNCTIONAL

DIFFERENTIAL EQUATIONS

I. KIGURADZE AND D. CHICHUA

Abstract. For the functional differential equation u(n)(t) = f(u)(t)
we have established the sufficient conditions for solvability and unique
solvability of the boundary value problems

u(i)(0) = ci (i = 0, . . . , m− 1),

∫ +∞

0

|u(m)(t)|2dt < +∞

and

u(i)(0) = ci (i = 0, . . . , m− 1),
∫ +∞

0

t2j |u(j)(t)|2dt < +∞ (j = 0, . . . , m),

where n ≥ 2, m is the integer part of n
2 , ci ∈ R, and f is the con-

tinuous operator acting from the space of (n− 1)-times continuously
differentiable functions given on an interval [0, +∞[ into the space of
locally Lebesgue integrable functions.

§ 1. FORMULATION OF THE EXISTENCE AND UNIQUENESS
THEOREMS

Let n ≥ 2 and f be a continuous operator acting from the space of
(n−1)-times continuously differentiable functions given on an interval R+ =
[0, +∞[ into the space of locally Lebesgue integrable functions given on the
same interval. Consider the functional differential equation

u(n)(t) = f(u)(t) (1.1)

by whose solution we shall understand a function u : R+ → R which is
locally absolutely continuous with its derivatives up to order n−1 inclusive
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and satisfies (1.1) almost everywhere on R+. In this paper we shall be
concerned with the problems of the existence and uniqueness of a solution
of equation (1.1) satisfying either of the two boundary conditions

u(i)(0) = ci (i = 0, . . . , m− 1),
∫ +∞

0
|u(m)(t)|2dt < +∞ (1.2)

and

u(i)(0) = ci (i = 0, . . . ,m− 1),
∫ +∞

0
t2j |u(j)(t)|2dt < +∞ (j = 0, . . . , m).

(1.3)

For the case f(u)(t) = g(t, u(t), . . . , u(n−1)(t)) problems of type (1.1),
(1.2) and (1.1), (1.3), as well as their closely related problems of the ex-
istence of so-called proper oscillatory and vanishing-at-infinity solutions of
the equation

u(n) = g
(

t, u(t), . . . , u(n−1)(t)
)

,

have been studied with a sufficient thoroughness (see [1,2,3] and §§4 and
14 in the monograph [4]). As to the general case, the above-mentioned
problems were not previously investigated.

In this paper we establish the sufficient conditions for the solvability and
unique solvability of problems (1.1), (1.2) and (1.1), (1.3). In [5] these
results are specified for a differential equation with deviating arguments of
the form

u(n)(t) = g
(

t, u(τ0(t)), . . . , u(m−1)(τm−1(t))
)

,

and criteria are found for the existence of a multiparameter family of vani-
shing-at-infinity proper oscillatory solutions of the above equation.

The following notation will be used throughout the paper.
Cn−1([t1, t2]) and L([t1, t2]) are respectively the spaces of (n − 1)-times

continuously differentiable and Lebesgue integrable real functions given on
the segment [t1, t2].

˜Cn−1 is the space of functions u : R+ → R which are locally absolutely
continuous (i.e., absolutely continuous on each finite interval from R+) to-
gether with their derivatives up to order n− 1 inclusive.

Cn−1 is a topological space of (n−1)-times continuously differentiable real
functions given on R+, where by the convergence of the sequence (uk)+∞k=1 we
understand the uniform convergence of sequences (u(i)

k )+∞k=1 (i = 0, . . . , n−1)
on each finite interval from R+.

Cn−1,m
0 =

{

u ∈ Cn−1 :
∫ +∞

0
|u(m)(t)|2dt < +∞

}

,
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Cn−1,m =
{

u ∈ Cn−1 :
∫ +∞

0
t2j |u(i)|2dt < +∞ (i = 0, . . . , m)

}

.

If u ∈ Cn−1,m
0 , then

‖u‖0,m =
[

m−1
∑

i=0

|u(i)(0)|2 +
∫ +∞

0
|u(m)(s)|2ds

]1/2
;

if, however, u ∈ Cn−1,m, then

‖u‖m =
[

∫ +∞

0
(1 + s)2m|u(m)(s)|2ds

]1/2
.

L is the space of locally Lebesgue integrable functions v : R+ → R with
the topology of convergence in the mean on each finite interval from R+.

µk
i (i = 0, 1, . . . ; k = 2i, 2i + 1, . . . ) are the numbers given by the recur-

rent relations

µi+1
0 =

1
2
, µ2i

i = 1, µk
i+1 = µk−1

i+1 + µk−2
i (k = 2i + 3, . . . ).

γn = 0 for n ≤ 3,

γn =
m0−1
∑

j=0

n!
(2m− 2− 4j)!

µn
m−1−2j for n ≥ 4.

where m0 is the integer part of the number n
4 .

In the sequel it will always be assumed that f : Cn−1 → L is a continuous
operator.

Theorem 1.1. Let for any u ∈ Cn−1,m
0 the inequalities

(−1)n−m−1u(t)f(u)(t) ≥ −a1(t)‖u‖20,m − a2(t), (1.4)

|f(u)(t)| ≤ b(t, |u(t)|, ‖u‖0,m) (1.5)

hold almost everywhere on R+, where ai : R+ → R+ (i = 1, 2) are measu-
rable functions such that

∫ +∞

0
(1 + t)n−2ma1(t)dt < µn

m,
∫ +∞

0
(1 + t)n−2ma2(t)dt < +∞,

(1.6)

and the function b : R3
+ → R+ is locally summable with respect to the first

argument, nondecreasing with respect to the last two arguments and

lim
t→0

y→+∞

(

y−2
∫ t

0
b(s, x, y)ds

)

= 0 for x ∈ R+. (1.7)
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Then problem (1.1), (1.2) has at least one solution.

Theorem 1.2. Let for any u and u ∈ Cn−1,m
0 the inequality

(−1)n−m−1(u(t)− u(t))(f(u)(t)− f(u)(t)) ≥ −a(t)‖u− u‖20,m (1.8)

hold almost everywhere on R+, where a : R+ → R+ is a measurable function
such that

∫ +∞

0
(1 + t)n−2ma(t)dt < µn

m. (1.9)

Then problem (1.1), (1.2) has at most one solution.

Theorem 1.3. Let for any u ∈ Cn−1,m the inequalities

(−1)n−m−1u(t)f(u)(t) ≥
≥ γ(1 + t)−n|u(t)|2 − a1(t)‖u‖2m − a2(t), (1.10)

|f(u)(t)| ≤ b(t, |u(t)|, ‖u‖m) (1.11)

hold almost everywhere on R+, where γ and ai : R+ → R+ (i = 1, 2) are a
positive number and measurable functions such that

∫ +∞

0
(1 + t)nai(t)dt < +∞ (i = 1, 2),

δ =
n!

(2m)!
µn

m −
∫ +∞

0
(1 + t)na1(t)dt > 0,

(1.12)

γ + (−1)m n!
2

>

>
m− 1

4
γn

[γn

δ
+

(m− 2)(4m2 −m + 3)
3

+ 4
]m−1

, (1.13)

and the function b : R3
+ → R+ is locally summable with respect to the first

argument, nondecreasing with respect to the last two arguments, and satisfies
condition (1.7). Then problem (1.1), (1.3) has at least one solution.

Theorem 1.4. Let for any u and u ∈ Cn−1,m the inequality

(−1)n−m−1(u(t)− u(t))(f(u)(t)− f(u)(t)) ≥
≥ γ(1 + t)−n(u(t)− u(t))2 − a(t)‖u− u‖2m (1.14)

hold almost everywhere on R+, where γ and a : R+ → R+ are a positive
number and a measurable function such that

δ =
n!

(2m)!
µn

m −
∫ +∞

0
(1 + t)na(t)dt > 0 (1.15)
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and inequality (1.13) is fulfilled. Then problem (1.1), (1.3) has at most one
solution.

§ 2. AUXILIARY STATEMENTS

2.1. Operator σk. For an arbitrary i ∈ {0, . . . , n − 1} we denote by vi
the polynomial of degree not higher than 2n − 1, satisfying the boundary
conditions

v(j)
i (0) = δij , v(j)

i (1) = 0 (j = 0, . . . , n− 1),

where δij is the Kronecker symbol. Let v∗ be the maximal value among
maxima of functions |v(j)

i | (i, j = 0, . . . , n − 1) on the segment [0, 1]. For
any natural k and function u ∈ Cn−1([0, k]) we set

εk(u) = (k + 2)−n
[

1 +
n−1
∑

j=0

|u(j)(k)|
]−2

(v∗)−2,

σk(u)(t) =























u(t) for 0 ≤ t ≤ k
n−1
∑

i=0

εi
k(u)vi

( t− k
εk(u)

)

u(i)(k) for k < t < k + εk(u)

0 for t ≥ k + εk(u)

.

Lemma 2.1. For any natural k the operator σk : Cn−1([0, k]) → Cn−1

is continuous and for any function u ∈ Cn−1([0, k]) satisfying the conditions

u(i)(k) = 0 (i = 0, . . . , m− 1) (2.1)

we have

0 ≤ ‖σk(u)‖20,m −
m−1
∑

i=0

|u(i)(0)|2 −
∫ k

0
|u(m)(s)|2ds ≤ 1, (2.2)

0 ≤ ‖σk(u)‖2m −
∫ k

0
(1 + s)2m|u(m)(s)|2ds ≤ 1. (2.3)

Proof. The continuity of the operator σk is obvious. We shall prove the
validity of inequality (2.2). In view of (2.1)

0 ≤ ‖σk(u)‖20,m −
(

m−1
∑

i=0

|u(i)(0)|2
)

−
∫ k

0
|u(m)(s)|2ds =

=
∫ k+εk(u)

k

[
n−1
∑

i=m

εi−m
k (u)v(m)

i

( s− k
εk(u)

)

u(i)(k)
]2

ds ≤
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≤ εk(u)(v∗)2
[

n−1
∑

i=m

|u(i)(k)|
]2

< 1.

Inequality (2.3) is proved likewise.

2.2. Lemmas on A Priori Estimates. In this subsection we shall derive
a priori estimates of the function u ∈ ˜Cn−1 which for some natural k satisfy
either of the two systems of differential inequalities

|u(n)(t)| ≤ b0(t, |u(t)|, ‖σk(u)‖0,m), (−1)n−m−1u(n)(t)u(t) ≥
≥ −a1(t)‖σk(u)‖20,m − a2(t) for 0 ≤ t ≤ k (2.4)

and

|u(n)(t)| ≤ b0(t, |u(t)|, ‖σk(u)‖m), (−1)n−m−1u(n)(t)u(t) ≥
≥ γ(1 + t)−n|u(t)|2 − a1(t)‖σk(u)‖2m − a2(t) for 0 ≤ t ≤ k (2.5)

and the boundary conditions

|u(i)(0)| ≤ ρ0 (i = 0, . . . , m− 1),

u(j)(k) = 0 (j = 0, . . . , n−m− 1),
(2.6)

where ρ0 > 0 and m is the integer part of the number n
2 .

Along with the above-mentioned numbers µk
i we shall introduce the num-

bers µk
ij (i = 0, 1, . . . ; j = i, i + 1, . . . ; k = i + j + 1, i + j + 2, . . . ) using

the following recurrent relations:

µk
00 =

1
2
, µk

0j = 1 (k = 1, 2, . . . ; j = 1, . . . , k − 1),

µ2i+1
ii =

1
2
, µk

i k−i−1
= 1 (i = 1, 2, . . . ; k = 2i + 2, 2i + 3, . . . ),

µk
ij = µk−1

ij + µk−2
i−1 j−1

(i = 1, 2, . . . ; j = i, i + 1, . . . ; k = i + j + 2, i + j + 3, . . . ).

The following three lemmas are proved in [4] (see Lemmas 4.1-4.3 and 5.1).

Lemma 2.2. If the functions u and w : [0, t0] → R are absolutely con-
tinuous together with their derivatives up to order n− 1 inclusive, then

∫ t0

0
w(t)u(t)u(n)(t)dt =

=
n−m−1

∑

i=0

n−1−i
∑

j=i

(−1)n−1−jµn
ij

(

w(n−1−i−j)(t0)u(i)(t0)u(j)(t0)−

−w(n−1−i−j)(0)u(i)(0)u(j)(0)
)

+
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+
m

∑

i=0

(−1)n−iµn
i

∫ t0

0
w(n−2i)(t)|u(i)(t)|2dt.

Lemma 2.3. Let m ≥ 2, t0 > 0, r0 ≥ 0 and the function u : [0, t0] → R
be m-times continuously differentiable and

(1 + t0)2iu(i)(t0)u(i−1)(t0)− i(1 + t0)2i−1|u(i−1)(t0)|2 −

−u(i)(0)u(i−1)(0) + i|u(i−1)(0)|2 ≤ r0 (i = 1, . . . , m− 1).

Then for any η > 1
3 (m− 2)(4m2 −m + 3) the estimates

∫ t0

0
(1 + t)2i|u(i)(t)|2dt ≤ 2ηm−2r0 + αi(η)

∫ t0

0
|u(t)|2dt +

+βi(η)
∫ t0

0
(1 + t)2m|u(m)(t)|2dt (i = 1, . . . , m− 1),

hold, where

α1(η) = (m− 1)
(

1 +
η
4
)

,

αi(η) = (m− i)
(

1 +
η
4
)

i−1
∏

j=1

(

η − (j − 1)(4j2 + 7j + 6)
3

)

(i = 2, . . . , m− 1),

βi(η) =
m−1
∏

j=i

(

η − (j − 1)(4j2 + 7j + 6)
3

)−1
(i = 1, . . . ,m− 1).

(2.7)

Lemma 2.4. Let δ > 0 and the function u : [0, δ] → R be i-times
continuously differentiable. Then there exists a point t∗ ∈ [0, δ] such that

|u(i)(t∗)| ≤ (i + 1)!(2i + 1)
i+ 1

2 δ
− 1

2−i
(

∫ δ

0
|u(t)|2dt

) 1
2
.

Lemma 2.5. Let r1 > 0 and the function b0 : [0, 1] × R2
+ → R+ be

summable with respect to the first argument, nondecreasing with respect to
the last two arguments and

lim
t→0

y→+∞

(

y−2
∫ t

0
b0(s, x, y)ds

)

= 0 for x ∈ R+. (2.8)

Then there exists a positive number r2 such that any function u : [0, 1] → R,
absolutely continuous together with its derivatives up to order n−1 inclusive
and satisfying the inequalities
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∫ 1

0
|u(n)(s)u(s)|ds +

∫ 1

0
|u(m)(s)|2ds ≤ r1

(

1 +
n−1
∑

i=m

|u(i)(0)|
)

, (2.9)

|u(n)(t)| ≤ b0

(

t, |u(t)|, r
1
2
1

(

1 +
n−1
∑

i=m

|u(i)(0)|
)

1
2 )

for 0 ≤ t ≤ 1,

(2.10)

admits the estimate

|u(i)(0)| ≤ r2 (i = m, . . . , n− 1). (2.11)

Proof. By virtue of condition (2.8) there exist numbers δ ∈]0, 1] and y0 ∈ R+

such that
∫ δ

0
b0(s, 8nr1, y)ds ≤ 1

8nr1
y2 for y ≥ y0,

and therefore
∫ δ

0
b0(s, 8nr1, y)ds ≤

≤
∫ δ

0
b0(s, 8nr1, y0)ds +

1
8nr1

y2 for y ≥ 0. (2.12)

According to Lemma 2.4 there exist point ti ∈ [0, δ] (i = m, . . . , n − 1)
such that

|u(i)(ti)| ≤ (i−m + 1)!(2i− 2m + 1)
i−m+ 1

2 δ
− 1

2−i+m
(

∫ δ

0
|u(m)(s)|2ds

)

1
2

(i = m, . . . , n− 1).

Therefore from the equalities

u(i)(t) = u(i)(ti) +
∫ t

ti

u(i+1)(s)ds (i = m, . . . , n− 1)

we find

|u(i)(t)| ≤
n−1
∑

j=i

δj−i|u(j)(tj)|+ δn−1−i
∫ δ

0
|u(n)(s)|ds ≤

≤ nnδ−n
(

∫ 1

0
|u(m)(s)|2ds

)

1
2

+
∫ δ

0
|u(n)(s)|ds

for 0 ≤ t ≤ δ (i = m, . . . , n− 1).
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Hence by (2.9) it follows that

n−1
∑

i=m

|u(i)(0)| ≤ n1+nδ−n
(

∫ 1

0
|u(m)(s)|2ds

)

1
2

+ n
∫ δ

0
|u(n)(s)|ds ≤

≤ n2+2nδ−2nr1 +
1

4r1

∫ 1

0
|u(m)(s)|2ds + n

∫ δ

0
|u(n)(s)|ds ≤

≤ n2+2nδ−2nr1 +
1
4

(

1 +
n−1
∑

i=m

|u(i)(0)|
)

+ n
∫ δ

0
|u(n)(s)|ds. (2.13)

Let I1 and I2 be respectively the set of points of the interval [0, δ] at which
the inequalities |u(t)| ≤ 8nr1 and |u(t)| > 8nr1 hold. Then on account of
inequalities (2.9), (2.10), and (2.12) we have

∫ δ

0
|u(n)(s)|ds =

∫

I1

|u(n)(s)|ds +
∫

I2

|u(n)(s)|ds ≤

≤
∫

I1

b0

(

s, 8nr1, r
1
2
1

(

1 +
n−1
∑

i=m

|u(i)(0)|
)

1
2
)

ds +
1

8nr1

∫

I2

|u(n)(s)u(s)|ds ≤

≤
∫ δ

0
b0(s, 8nr1, y0)ds +

1
4n

(

1 +
n−1
∑

i=m

|u(i)(0)|
)

.

Taking the latter inequality into account, from (2.13) we obtain

n−1
∑

i=m

|u(i)(0)| ≤ n2+2nδ−2nr1 + n
∫ δ

0
b0(s, 8nr1, y0)ds +

1
2

(

1 +
n−1
∑

i=m

|u(i)(0)|
)

.

This immediately implies estimates (2.11), where

r2 = 2n2+2nδ−2nr1 + 2n
∫ δ

0
b0(s, 8nr1, y0)ds + 1

is the positive number independent of u.

Lemma 2.6. Let ρ0 > 0, the functions ai : R+ → R+ (i = 1, 2) be
measurable and satisfy conditions (1.6), and the function b0 : R3

+ → R+

be locally summable with respect to the first argument, nondecreasing with
respect to the last two arguments, and satisfies condition (2.8). Then there
exists a positive number r such that any function u ∈ ˜Cn−1 satisfying for
some natural k conditions (2.4) and (2.6) admits the estimates

∫ k

0
|u(m)(s)|2ds +

∫ k

0
(1 + s)n−2m|u(n)(s)u(s)|ds ≤ r, (2.14)

|u(i)(t)| ≤ r(1 + t)m−i− 1
2 for 0 ≤ t ≤ k (i = 0, . . . ,m− 1), (2.15)
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|u(i)(t)| ≤ r(1 + t)n−i−1 +
∫ t

0
(t− s)n−i−1b0

(

s, r(1 + s)m− 1
2 , r

)

ds

for 0 ≤ t ≤ k (i = m, . . . , n− 1). (2.16)

Proof. By virtue of (1.6)

ε = µn
m −

∫ +∞

0
(1 + s)n−2ma1(s)ds > 0, (2.17)

ρ1 =
(

1 + mρ2
0

)

µn
m +

∫ +∞

0
(1 + s)n−2ma2(s)ds < +∞. (2.18)

For

r1 = (ε−1 + ε−1µn
m + 2)ρ1 + (ε−1 + ε−1µn

m + 1)mρ0 + 1 + m2ρ2
0

we shall choose r2 > 0 such that the conclusion of Lemma 2.5 is valid and
put r = r1(1 + r2 + mr2) + mρ0.

Let u ∈ ˜Cn−1 be an arbitrary function satisfying, for some natural k,
inequalities (2.4) and (2.6). Then

(−1)n−m(1 + t)n−2mu(n)(t)u(t) + wk(t) =

= (1 + t)n−2ma1(t)‖σk(u)‖20,m + (1 + t)n−2ma2(t),

where

wk(t) = (1 + t)n−2m|(−1)n−mu(n)(t)u(t)−
−a1(t)‖σk(u)‖20,m − a2(t)|. (2.19)

Hence due to Lemma 2.2 we find

µn
m

∫ k

0
|u(m)(s)|2ds +

∫ k

0
wk(s)ds = l(u) +

+‖σk(u)‖20,m

∫ k

0
(1 + s)n−2ma1(s)ds+

∫ k

0
(1 + s)n−2ma2(s)ds, (2.20)

where

l(u) =
m−1
∑

i=0

(−1)m−iu(i)(0)u(n−1−i)(0) for n = 2m

and

l(u) = −1
2
|u(m)(0)|2 +

m−1
∑

i=0

(−1)m−i
[

(i + 1)u(n−2−i)(0)−

−u(n−1−i)(0)
]

u(i)(0) for n = 2m + 1.
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By conditions (2.2) and (2.6)

‖σk(u)‖20,m ≤ 1 + mρ2
0 +

∫ k

0
|u(m)(s)|2ds (2.21)

and

l(u) ≤ mρ0

n−1
∑

i=m

|u(i)(0)|.

Taking into account these inequalities and conditions (1.6), (2.17), and
(2.18), from (2.19) and (2.20) we obtain

∫ k

0
wk(s)ds ≥

∫ k

0
(1 + s)n−2m|u(n)(s)u(s)|ds−

−‖σk(u)‖20,m

∫ k

0
(1 + s)n−2ma1(s)ds−

∫ k

0
(1 + s)n−2ma2(s)ds ≥

≥
∫ k

0
(1 + s)n−2m|u(n)(s)u(s)|ds− µn

m

∫ k

0
|u(m)(s)|2ds− ρ1, (2.22)

µn
m

∫ k

0
|u(m)(s)|2ds +

∫ k

0
wk(s)ds ≤ (µn

m − ε)
∫ k

0
|u(m)(s)|2ds + ρ1 +

+mρ0

n−1
∑

i=m

|u(i)(0)|

and

ε
∫ k

0
|u(m)(s)|2ds +

∫ k

0
wk(s)ds ≤ ρ1 + mρ0

n−1
∑

i=m

|u(i)(0)|. (2.23)

Since wk is nonnegative, from (2.22) and (2.23) we obtain

∫ k

0
|u(m)(s)|2ds ≤ ε−1ρ1 + ε−1mρ0

n−1
∑

i=m

|u(i)(0)|, (2.24)

∫ k

0
(1 + s)n−2m|u(n)(s)u(s)|ds ≤ (ε−1µn

m + 2)ρ1 +

+(1 + ε−1µn
m)mρ0

n−1
∑

i=m

|u(i)(0)|,

∫ k

0
|u(m)(s)|2ds +

∫ k

0
(1 + s)n−2m|u(n)(s)u(s)|ds ≤

≤ r1

(

1 +
n−1
∑

i=m

|u(i)(0)|
)

. (2.25)
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On the other hand, using (2.21) and (2.24), from (2.4) we have

|u(n)(t)|≤b0

(

t, |u(t)|, r
1
2
1

(

1+
n−1
∑

i=m

|u(i)(0)|
) 1

2
)

for 0≤ t≤k. (2.26)

Therefore inequalities (2.9) and (2.10) are fulfilled. Thus estimates (2.11)
hold by virtue of the choice of r2.

With (2.11) taken into account, inequalities (2.25) and (2.26) imply es-
timates (2.14) and (2.16). On the other hand, using (2.6) and (2.11), from
(2.25) we find

|u(i)(t)| =
∣

∣

∣

m−1
∑

j=i

tj−i

(j − i)!
u(j)(0) +

1
(m− 1− i)!

∫ t

0
(t− s)m−1−iu(m)(s)ds

∣

∣

∣ ≤

≤ mρ0(1 + t)
m−1−i

+
[
∫ t

0
(t− s)2m−2−2ids

]

1
2 [

∫ t

0
|u(m)(s)|2ds

]

1
2

≤

≤ r(1 + t)
m−i− 1

2 for 0 ≤ t ≤ k (i = 0, . . . , m− 1).

Therefore estimates (2.15) hold as well.

Lemma 2.7. Let γ and ai : R+ → R+ (i = 1, 2) be a positive constant
and measurable functions, satisfying conditions (1.12) and (1.13), ρ0 > 0,
and b0 : R3

+ → R+ be locally summable with respect to the first argument,
nondecreasing with respect to the last two arguments, and satisfies condition
(2.8). Then there is a positive number r such that any function u ∈ ˜Cn−1,
satisfying for some natural k conditions (2.5) and (2.6), admits estimates

m
∑

i=0

∫ k

0
(1 + s)2i|u(i)(s)|2ds +

∫ k

0
(1 + s)n|u(n)(s)u(s)|ds ≤ r, (2.27)

|u(i)(t)| ≤ r(1 + t)−i− 1
2 for 0 ≤ t ≤ k (i = 0, . . . ,m− 1), (2.28)

|u(i)(t)|≤r(1 + t)n−i−1+
∫ t

0
(t− s)n−i−1b0

(

s, r(1 + s)−
1
2 , r

)

ds

for 0 ≤ t ≤ k (i = m, . . . , n− 1). (2.29)

Proof. According to (1.13) there exists ε ∈]0, δ[ such that

γ + (−1)m n!
2

>
m− 1

4
γn(η + 4)m−1 + ε, (2.30)

where

η =
γn

δ − ε
+

(m− 2)(4m2 −m + 3)
3

.
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Let

ρ1 =
2

∑

i=1

∫ +∞

0
(1 + s)nai(s)ds, ρ2 = (1 + ρ2

0)
m−1
∑

i=0

n−1−i
∑

j=i

n!
(1 + i + j)!

µn
ij ,

ρ3 = 2mρ2
0η

m−2γn, r1 =
[

ε−1(1 + γ +
n!

(2m)!
µn

m

)

+ 2
]

(ρ1 + ρ2 + ρ3) + 1.

Choose r2 > 0 such that the conclusion of Lemma 2.5 is valid and put

r = 2(m− 1)mρ2
0η

m−2 + r1
[

(m− 1)2(η + 4)m−1 + m
]

(1 + nr2).

Let u ∈ ˜Cn−1 be an arbitrary function satisfying for some natural k
conditions (2.5) and (2.6). Then

(−1)n−m(1 + s)nu(n)(s)u(s) + γ|u(s)|2 + wk(s) =

(1 + s)na1(s)‖σk(u)‖2m + (1 + s)na2(s) for 0 ≤ s ≤ k,

where

wk(s) =
∣

∣(−1)n−m(1 + s)nu(n)(s)u(s) + γ|u(s)|2 −
−(1 + s)na1(s)‖σk(u)‖2m − (1 + s)na2(s)

∣

∣.

Hence by virtue of Lemma 2.2 we find

m
∑

i=0

(−1)m−i n!
(2i)!

µn
i

∫ k

0
(1 + s)2i|u(i)(s)|2ds + γ

∫ k

0
|u(s)|2ds +

+
∫ k

0
wk(s)ds = l(u) + ‖σk(u)‖2m

∫ k

0
(1 + s)na1(s)ds +

∫ k

0
(1 + s)na2(s)ds,

where

l(u) =
n−m−1

∑

i=0

n−1−i
∑

j=i

(−1)m−1−j n!
(i + j + 1)!

µn
iju

(i)(0)u(j)(0).

If we set cm(u) = 0 for m = 1,

cm(u) =
m−1
∑

i=1

(−1)m−i−1 n!
(2i)!

µn
i

∫ k

0
(1 + s)2i|u(i)(s)|2ds for m > 1,

then the latter equality can be rewritten as

n!
(2m)!

µn
m

∫ k

0
(1 + s)2m|u(m)(s)|2ds +

[

γ + (−1)m n!
2

]

∫ k

0
|u(s)|2ds +

+
∫ k

0
wk(s)ds = cm(u) + l(u) + ‖σk(u)‖2m

∫ k

0
(1 + s)na1(s)ds +
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+
∫ k

0
(1 + s)na2(s)ds. (2.31)

By conditions (1.12), (2.3), and (2.6)

‖σk(u)‖2m
∫ k

0
(1 + s)na1(s)ds +

∫ k

0
(1 + s)na2(s)ds ≤

≤
( n!

(2m)!
µn

m − δ
)

∫ k

0
(1 + s)2m|u(m)(s)|2ds + ρ1, (2.32)

l(u) ≤
m−1
∑

i=0

n−1−i
∑

j=i

(−1)m−1−j n!
(1 + i + j)!

µn
iju

(i)(0)u(j)(0) ≤

≤
m−1
∑

i=0

[

ρ2
0

m−1
∑

j=i

n!
(1 + i + j)!

µn
ij + ρ0

n−1−i
∑

j=m

n!
(1 + i + j)!

µn
ij |u(j)(0)|

]

≤

≤ ρ2

[

1 +
n−1
∑

i=m

|u(i)(0)|
]

. (2.33)

If m > 1, then on account of Lemma 2.3 we have

cm(u)≤
m0−1
∑

j=0

n!
(2m− 2− 4j)!

µn
m−1−2j

∫ k

0
(1+s)2m−2−4j |u(m−1−2j)(s)|2ds≤

≤ ρ3 +
m0−1
∑

j=0

n!
(2m− 2− 4j)!

µn
m−1−2jαm−1−2j(η)

∫ k

0
|u(s)|2ds +

+
m0−1
∑

j=0

n!
(2m− 2− 4j)!

µn
m−1−2jβm−1−2j(η)

∫ k

0
(1 + s)2m|u(m)(s)|2ds.

On the other hand, by virtue of the inequality

η > 1 +
(m− 2)(4m2 −m + 3)

3

(2.7) implies clearly that

αi(η) ≤ m− 1
4

(η + 4)m−1,

βi(η) ≤
[

η − (m− 2)(4m2 −m + 3)
3

]−1
=

δ − ε
γn

(2.34)

(i = 1, . . . ,m− 1).
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Therefore

cm(u) ≤ρ3+
m− 1

4
(η+4)m−1γn

∫ k

0
|u(s)|2ds+(δ−ε)

∫ k

0
(1+s)2m|u(m)(s)|2ds.

If along with this inequality we take into consideration inequalities (2.30),
(2.32), and (2.33), then from (2.31) we have

ε
[
∫ k

0
(1 + s)2m|u(m)(s)|2ds +

∫ k

0
|u(s)|2ds

]

+
∫ k

0
wk(s)ds ≤

≤ (ρ1 + ρ2 + ρ3)
[

1 +
n−1
∑

i=m

|u(i)(0)|
]

.

Therefore
∫ k

0
(1 + s)2m|u(m)(s)|2ds +

∫ k

0
|u(s)|2ds ≤

≤ ε−1(ρ1 + ρ2 + ρ3)
[

1 +
n−1
∑

i=m

|u(i)(0)|
]

, (2.35)

∫ k

0
(1 + s)n|u(n)(s)u(s)|ds ≤

∫ k

0
wk(s)ds + γ

∫ k

0
|u(s)|2ds +

+
[

1+
∫ k

0
(1+s)2m|u(m)(s)|2ds

]

∫ k

0
(1+s)na1(s)ds+

∫ k

0
(1+s)na2(s)ds≤

≤ ρ1 +
[

ε−1(γ +
n!

(2m)!
µn

m

)

+ 1
]

(ρ1 + ρ2 + ρ3)
[

1 +
n−1
∑

i=m

|u(i)(0)|
]

,

∫ k

0
(1 + s)2m|u(m)(s)|2ds +

∫ k

0
|u(s)|2ds +

+
∫ k

0
(1 + s)n|u(n)(s)u(s)|ds ≤ r1

[

1 +
n−1
∑

i=m

|u(i)(0)|
]

. (2.36)

On the other hand, using (2.3) and (2.35), from (2.5) we obtain inequality
(2.26). Therefore inequalities (2.9) and (2.10) are fulfilled. Thus estimates
(2.11) hold by virtue of the choice of r2.

By inequalities (2.11), (2.34), (2.36) and Lemma 2.3 we have

∫ k

0
(1 + s)2m|u(m)(s)|2ds +

∫ k

0
|u(s)|2ds +

+
∫ k

0
(1 + s)n|u(n)(s)u(s)|ds ≤ r1(1 + nr2),
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m−1
∑

i=1

∫ k

0
(1 + s)2i|u(i)(s)|2ds ≤ 2m(m− 1)ρ2

0η
m−2 +

+
m−1
∑

i=1

αi(η)
∫ k

0
|u(s)|2ds +

m−1
∑

i=1

βi(η)
∫ k

0
(1 + s)2m|u(m)(s)|2ds ≤

≤ 2m(m− 1)ρ2
0η

m−2 + (m− 1)
[

(m− 1)(η + 4)m−1 + 1
]

×

×
[

∫ k

0
(1 + s)2m|u(m)(s)|2ds +

∫ k

0
|u(s)|2ds

]

≤

≤ 2m(m− 1)ρ2
0η

m−2 + r1
[

(m− 1)2(η + 4)m−1 + m− 1
]

(1 + nr2).

Therefore estimate (2.27) is valid.
In view of (2.6)

|u(i)(t)| =
∣

∣

∣

∫ k

t
u(i+1)(s)ds

∣

∣

∣ ≤

≤
∣

∣

∣

∫ k

t
(1 + s)−2i−2ds

∣

∣

∣

1
2
[

∫ k

t
(1 + s)2i+2|u(i+1)(s)|2ds

] 1
2 ≤

≤ (1 + t)−i− 1
2

[
∫ k

t
(1 + s)2i+2|u(i+1)(s)|2ds

] 1
2

for 0 ≤ t ≤ k (i = 0, . . . ,m− 1).

Hence, with (2.27) taken into account, we obtain estimates (2.28). As to
estimates (2.29), they follow from inequalities (2.10), (2.11), and (2.28).

2.3. Some Properties of Functions from the Classes Cn−1,m
0 and

Cn−1,m.

Lemma 2.8. If u ∈ Cn−1,m
0 , then

lim
t→+∞

t
i+ 1

2−m

u(i)(t) = 0 (i = 0, . . . , m− 1) (2.37)

and for any constants cij (i = 0, . . . , n − m − 1; j = i, . . . , n − 1 − i) the
function

w(t) =
n−m−1

∑

i=0

n−1−i
∑

j=i

cijti+j+1−2mu(i)(t)u(j)(t)

satisfies the condition

lim inf
t→+∞

|w(t)| = 0. (2.38)
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Lemma 2.9. If u ∈ Cn−1,m, then

lim
t→+∞

t
i+ 1

2 u(i)(t) = 0 (i = 0, . . . , m− 1) (2.39)

and for any constants cij (i = 0, . . . , n − m − 1; j = i, . . . , n − 1 − i) the
function

w(t) =
n−m−1

∑

i=0

n−1−i
∑

j=i

cijti+j+1u(i)(t)u(j)(t)

satisfies condition (2.38).

Lemma 2.10. If m ≥ 2, r0 ≥ 0, u ∈ Cn−1,m,

i|u(i−1)(0)|2 − u(i)(0)u(i−1)(0) ≤ r0 (i = 1, . . . ,m− 1),

then for any η > 1
3 (m− 2)(4m2 −m + 3) we have the estimates

∫ +∞

0
(1 + t)2i|u(i)(t)|2dt ≤ 2ηm−2r0 + αi(η)

∫ +∞

0
|u(t)|2dt +

+βi(η)
∫ +∞

0
(1 + t)2m|u(m)(t)|2dt (i = 1, . . . , m− 1).

These lemmas follow immediately from Lemmas 4.3-4.5 in the mono-
graph [4].

2.4. Lemma on the Solvability of an Auxiliary Two-Point Boun-
dary Value Problem. Let t0 ∈ ]0,+∞[, ci ∈ R (i = 0, . . . ,m− 1), cj ∈ R
(j = 0, . . . , n − m − 1), p : [0, t0] → R be a summable function and q :
Cn−1([0, t0]) → L([0, t0]) be a continuous operator. Consider the boundary
value problem

u(n)(t) = p(t)u(t) + q(u)(t), (2.40)

u(i)(0) = ci (i = 0, . . . ,m− 1),

u(j)(t0) = cj (j = 0, . . . , n−m− 1).
(2.41)

Lemma 2.11. Let (−1)n−m−1p(t) ≥ 0 for 0 ≤ t ≤ t0, and let there
exist a summable function q∗ : [0, t0] → R+ such that the inequality

|q(u)(t)| ≤ q∗(t) for 0 ≤ t ≤ t0 (2.42)

holds for any function u ∈ Cn−1([0, t0]) satisfying the boundary conditions
(2.41). Then problem (2.40), (2.41) is solvable.
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Proof. We shall show in the first place that the homogeneous problem

u(n)(t) = p(t)u(t), (2.400)

u(i)(0) = 0 (i = 0, . . . , m− 1),

u(j)(t0) = 0 (j = 0, . . . , n−m− 1)
(2.410)

has only a trivial solution.
Let u be an arbitrary solution of problem (2.400), (2.410). Then, since

the function (−1)n−mp is nonpositive, we have

(−1)n−mu(n)(t)u(t) + |p(t)||u(t)|2 = 0.

On integrating both sides of this equality from 0 to t0, by virtue of Lemma 2.2
and conditions (2.410) we obtain

µn
m

∫ t0

0
|u(m)(t)|2dt +

∫ t0

0
tn−2m|p(t)||u(t)|2dt + l0(u) = 0,

where l0(u) = 0 for n = 2m and l0(u) = 1
2 |u

(m)(0)|2 for n = 2m + 1. Hence
it is clear that u(t) ≡ 0.

Since problem (2.400), (2.410) has only a trivial solution, problem (2.40),
(2.41) is equivalent to the integral equation

u(t) = u0(t) +
∫ t0

0
G(t, s)q(u)(s)ds, (2.43)

where u0 is the solution of the homogeneous equation (2.400) under the
boundary conditions (2.41) and G is the Green function of problem (2.400),
(2.410).

By Shauder’s principle [6] the continuity of the operator q : Cn−1([0, t0])
→ L([0, t0]) and condition (2.42) guarantees the existence of at least one
solution of the integral equation (2.43).

§ 3. PROOFS OF THE EXISTENCE AND UNIQUENESS
THEOREMS

Proof of Theorem 1.1. Let

ρ0 = max{|ci| i = 0, . . . , m− 1}, b0(t, x, y) = b(t, x, y),

r be the number from Lemma 2.6, r0 = 2m2ρ2
0 + 2r + 1, and

χ(s) =















1 for 0 ≤ s ≤ r0

2− s
r0

for r0 < s < 2r0

0 for s ≥ 2r0

. (3.1)
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For any natural k put qk(u)(t) = χ(‖σk(u)‖0,m)f(σk(u))(t) and consider
the boundary value problem

u(n)(t) = qk(u)(t), (3.2)

u(i)(0) = ci (i = 0, . . . , m− 1),

u(j)(k) = 0 (j = 0, . . . , n−m− 1).
(3.3)

By Lemma 2.1 the continuity of the operator f : Cn−1 → L implies the
continuity of the operator qk : C([0, k]) → L([0, k]). Let u ∈ Cn−1([0, k])
be an arbitrary function satisfying the boundary conditions (3.3). Then in
view of (1.5)

|qk(u)(t)| ≤ χ(‖σk(u)‖0,m)b(t, |u(t)|, ‖σk(u)‖0,m) for 0 ≤ t ≤ k.

On the other hand,

|u(t)| =
∣

∣

∣

m−1
∑

i=0

ti

i!
u(i)(0) +

1
(m− 1)!

∫ t

0
(t− s)m−1u(m)(s)ds

∣

∣

∣ ≤

≤ mρ0(1 + t)
m−1

+ t
m− 1

2
[

∫ t

0
|u(m)(s)|2ds

]

1
2

≤

≤ (1 + t)
m− 1

2
(

mρ0 + ‖σk(u)‖0,m
)

for 0 ≤ t ≤ k.

Therefore
|qk(u)(t)| ≤ q∗(t) for 0 ≤ t ≤ k,

where q∗(t) = b(t,mρ0+2r0)(1+t)
m− 1

2 , 2r0) and q∗ ∈ L([0, k]). Since all the
conditions of Lemma 2.11 are fulfilled for problem (3.2), (3.3), it is solvable.
Let uk be some solution of this problem. By inequalities (1.4) and (1.5)

(−1)n−m−1u(n)
k (t)uk(t) =

= (−1)n−m−1χ(‖σk(uk)‖0,m)σk(uk)(t)f(σk(uk))(t) ≥
≥ −a1(t)‖σk(uk)‖20,m − a2(t) for 0 ≤ t ≤ k,

|u(n)
k (t)| ≤ b0(t, |uk(t)|, ‖σk(uk)‖0,m) for 0 ≤ t ≤ k. (3.4)

Therefore by virtue of Lemmas 2.1 and 2.6 we have the estimates

|u(i)
k (t)| ≤ r(1 + t)

m−i− 1
2 (i = 0, . . . , m− 1),

|u(i)
k (t)| ≤ r(1 + t)n−1−i +

∫ t

0
(t− s)n−1−ib0

(

s, r(1 + s)
m− 1

2 , r
)

ds

(i = m, . . . , n− 1) for 0 ≤ t ≤ k, (3.5)
∫ k

0
|u(m)

k (s)|2ds ≤ r, ‖σk(uk)‖0,m ≤ r0. (3.6)
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Let us extend uk to the entire R+ using the equality

uk(t) = σk(uk)(t) for t ≥ k. (3.7)

Then due to (3.1) and (3.6) we have

u(n)
k (t) = f(uk)(t) for 0 ≤ t ≤ k. (3.8)

From (3.4)–(3.6) it is clear that the sequences
(

u(i)
k

)+∞
k=1 (i = 0, . . . , n−1)

are uniformly bounded and equicontinuous on each finite segment of R+.
Therefore by the Arzella-Ascoli lemma there exists a subsequence

(

ukj

)+∞
j=1

of (uk)+∞k=1 such that
(

u(i)
kj

)+∞
j=1 (i = 0, . . . , n − 1) uniformly converges on

each finite segment of R+.
By the continuity of the operator f : Cn−1 → L and equality (3.8) it is

clear that the function u(t) = limj→+∞ ukj
(t) for t ∈ R+ is a solution of

equation (1.1). On the other hand, from (3.3) and (3.6) it follows that u
satisfies conditions (1.2).

Proof of Theorem 1.2. Let u and u be two arbitrary solutions of problem
(1.1), (1.2). Putting u0(t) = u(t)− u(t), we obtain

u(i)
0 (0) = 0 (i = 0, . . . , m− 1),

∫ +∞

0
|u(m)

0 (s)|2ds < +∞.

On the other hand, by condition (1.8) we have

(−1)n−m(1 + t)n−2mu0(t)u
(n)
0 (t) ≤ (1 + t)n−2ma(t)‖u0‖20,m for t ∈ R+.

After integrating this inequality from 0 to t, by Lemma 2.2 we obtain

µn
m

∫ t

0
|u(m)

0 (s)|2ds ≤ w(t) + ‖u0‖20,m

∫ t

0
(1 + s)n−2ma(s)ds,

where

w(t) = (n− 2m)
n−m−1

∑

i=0

(−1)n−m−i(i + 1)u(i)
0 (t)u(n−2−i)

0 (t)−

−(1 + t)n−2m
n−m−1

∑

i=0

(−1)n−m−iu(i)
0 (t)u(n−1−i)

0 (t).

However, since by Lemma 2.8 the function w satisfies condition (2.38), from
the latter inequality we find

µn
m‖u0‖20,m = µn

m

∫ +∞

0
|u(m)

0 (s)|2ds ≤ ‖u0‖20,m

∫ +∞

0
(1 + s)n−2ma(s)ds.
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Hence on account of (1.9) we obtain ‖u0‖0,m = 0, i.e., u(t) ≡ u(t).

Proof of Theorem 1.3. Let

ρ0 = max{|ci| : i = 0, . . . , m− 1}, b0(t, x, y) = b(t, x, y) + γ(1 + t)−nx,

r be the number from Lemma 2.7, r0 = r + 1, and χ be the function given
by equality (3.1). For any natural k we put

qk(u)(t) = χ(‖σk(u)‖m)
[

f(σk(u))(t)− (−1)n−m−1γ(1 + t)−nu(t)
]

and consider the equation

u(n)(t) = (−1)n−m−1γ(1 + t)−nu(t) + qk(u)(t) (3.9)

with the boundary conditions (3.3).
According to Lemma 2.1 the operator qk : Cn−1([0, k]) → L([0, k]) is

continuous. On the other hand, by (1.11), for any u ∈ Cn−1([0, k]) we have

|qk(u)(t)| ≤ χ(‖σk(u)‖m)b0(t, |u(t)|, ‖σk(u)‖m) for 0 ≤ t ≤ k.

But

|u(t)| = |σk(u)(t)| = 1
(m− 1)!

∣

∣

∣

∫ +∞

t
(t− s)m−1[σk(u)(s)](m)ds

∣

∣

∣ ≤

≤ 1
(m− 1)!

∣

∣

∣

∫ +∞

t
(t− s)2m−2(1 + s)−2mds

∣

∣

∣

1
2 ‖σk(u)‖m ≤

≤ (1 + t)−
1
2 ‖σk(u)‖m for 0 ≤ t ≤ k.

Therefore
|qk(u)(t)| ≤ q∗(t) for 0 ≤ t ≤ k,

where q∗(t) = b0(t, 2r0(1 + t)
− 1

2 , 2r0) and q∗ ∈ L([0, k]). Thus all the
conditions of Lemma 2.11 are fulfilled for problem (3.9), (3.3). Therefore it
has at least one solution. Let uk be some solution of this problem. Then
due to inequalities (1.10) and (1.11) we shall have

(−1)n−m−1uk(t)u(n)
k (t) = γ(1 + t)−n[

1− χ(‖σk(uk)‖m)
]

|uk(t)|2 +

+(−1)n−m−1χ(‖σk(uk)‖m)σk(uk)(t)f(σk(uk)(t)) ≥
≥ γ(1 + t)−n|uk(t)|2 − a1(t)‖σk(uk)‖2m − a2(t) for 0 ≤ t ≤ k,

|u(n)
k (t)| ≤ γ(1 + t)−n|uk(t)|+ b(t, |uk(t)|, ‖σk(uk)‖m) =

= b0(t, |uk(t)|, ‖σk(uk)‖m) for 0 ≤ t ≤ k. (3.10)

Thus by Lemmas 2.1 and 2.7 we have the estimates

|u(i)
k (t)| ≤ r(1 + t)

−i− 1
2 (i = 0, . . . ,m− 1),
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|u(i)
k (t)|≤r(1 + t)n−1−i+

∫ t

0
(t− s)n−i−1b0

(

s, r(1+s)
− 1

2 , r
)

ds

(i = m, . . . , n− 1) for 0 ≤ t ≤ k, (3.11)
m

∑

i=0

∫ k

0
(1 + s)2i|u(i)

k (s)|2ds ≤ r, ‖σk(uk)‖m ≤ r0. (3.12)

Let us extend uk to the entire R+ using equality (3.7). Then identity
(3.8) will be fulfilled by (3.1) and (3.12).

According to estimates (3.10)–(3.12) the sequences
(

u(i)
k

)+∞
k=1 (i=0, ..., n−

1) are uniformly bounded and equicontinuous on each finite segment of R+.
Therefore there exists a subsequence

(

ukj

)+∞
j=1 of

(

uk
)+∞
k=1 such that

(

u(i)
kj

)+∞
j=1

(i = 0, . . . , n− 1) uniformly converges on each finite segment of R+.
Since the operator f : Cn−1 → L is continuous, from conditions (3.3),

(3.8), and (3.12) it follows that the function

u(t) = lim
j→+∞

ukj
(t) for t ∈ R+

is a solution of problem (1.1), (1.3).

Proof of Theorem 1.4. Let u and u be two arbitrary solutions of problem
(1.1), (1.3). If we put u0(t) = u(t)− u(t), then

u(i)
0 (0) = 0 (i = 0, . . . , m−1),

∫ +∞

0
t2j |u(j)

0 (t)|2dt < +∞ (j = 0, . . . ,m).

On the other hand by condition (1.14) we have

(−1)n−m(1 + t)nu0(t)u
(n)
0 (t) + γ|u0(t)|2 ≤ (1 + t)na(t)‖u0‖2m for t ∈ R+.

After integrating this inequality from 0 to t, by Lemma 2.2 we obtain
m

∑

i=0

(−1)m−i n!
(2i)!

µn
i

∫ t

0
(1 + s)2i|u(i)

0 (s)|2ds +

+γ
∫ t

0
|u0(s)|2ds ≤ w(t) + ‖u0‖2m

∫ t

0
(1 + s)na(s)ds for t ∈ R+,

where

w(t) =
n−m−1

∑

i=0

n−1−i
∑

j=i

(−1)m−j n!
(1 + i + j)!

µn
ij(1 + t)1+i+ju(i)(t)u(j)(t).

But by Lemma 2.9 the function w satisfies condition (2.38). Taking this
fact and condition (1.15) into account, from the latter inequality we find

δ‖u0‖2m +
[

γ + (−1)m n!
2

]
∫ +∞

0
|u0(s)|2ds ≤ cm(u0), (3.13)
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where

cm(u0) = 0 for m = 1,

cm(u0) =
m−1
∑

i=1

(−1)m−i−1 n!
(2i)!

µn
i

∫ +∞

0
(1 + s)2i|u(i)

0 (s)|2ds for m > 1.

In view of (1.13), for a sufficiently small ε ∈ ]0, δ[ inequality (2.30) is
fulfilled, where

η =
γn

δ − ε
+

(m− 2)(4m2 −m + 3)
3

.

If m > 1, then by virtue of Lemma 2.10 we have

cm(u0) ≤

≤
m0−1
∑

j=0

n!
(2m− 2− 4j)!

µn
m−1−2j

∫ +∞

0
(1 + s)2m−2−4j |u(m−1−2j)

0 (s)|2ds ≤

≤
m0−1
∑

j=0

n!
(2m− 2− 4j)!

µn
m−1−2jαm−1−2j(η)

∫ +∞

0
|u0(s)|2ds +

+
m0−1
∑

j=0

n!
(2m− 2− 4j)!

µn
m−1−2jβm−1−2j(η)‖u0‖2m ≤

≤ m− 1
4

(η + 4)m−1γn

∫ +∞

0
|u0(s)|2ds + (δ − ε)‖u0‖2m.

If along with this estimate we take into account inequality (2.30), then
from (3.13) we obtain

‖u0‖2m +
∫ +∞

0
|u0(s)|2ds ≤ 0.

Hence it is clear that u0(t) ≡ 0, i.e., u(t) ≡ u(t).
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