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THE CAUCHY–NICOLETTI PROBLEM WITH POLES

T. WERNER

Abstract. The Cauchy–Nicoletti boundary value problem for a sys-
tem of ordinary differential equations with pole-type singularities is
investigated. The conditions of the existence, uniqueness, and non-
uniqueness of a solution in the class of continuously differentiable
functions are given. The classical Banach contraction principle is
combined with a special transformation of the original problem.

Introduction

This paper deals with the Cauchy–Nicoletti problem for a system of dif-
ferential equations with poles, i.e., with the problem

(t− ai)rix′i =





ri−1
∑

j=0

Ai,j · (t− ai)j



 xi +

+ fi(t, x1, . . . , xn) + gi(t), t ∈ Ii, (1)

xi(ai) = 0, i = 1, . . . , n, (2)

where xi are unknown vector variables, Ai,j are constant matrices, fi, gi

are given vector functions, ai are given real numbers, and Ii are intervals of
real numbers, all specified below.

The systematic research of singular problems for ordinary defferential
equations (ODE) with nonsummable right-hand side was started by Czeczik
[1]. The first monograph on some classes of singular boundary value prob-
lems was written by Kiguradze [2]. There are very general results on the
Cauchy and especially the Cauchy–Nicoletti problems in this monograph
(see [2], Part II). Recently many different properties and applications of sin-
gular problems have been investigated. In [3] three boundary value problems
arising in gas dynamics are investigated. In [4] the question of when solu-
tions of singular equations are bounded in some general sense is discussed.
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In [5] the existence theorems for nonlinear problems with a singularity “less”
than pole of degree 1 but with a “great” nonlinearity are given. In [6] the
existence, the uniqueness and also the absence of solutions of the two-point
boundary value problem of second order with one pole of degree 2 is inves-
tigated. The investigation of the general local Cauchy initial value problem
with poles at infinity was carried out by Konyuchova [7]. The boundary
value problems with poles are investigated in different ways. For example,
in [8] the topological method is used while in [9] formal fundamental so-
lutions are calculated at poles using formal power series. This paper uses
the Laurent expansion method similarly to [7,9]. The main result shows
how the existence and uniqueness of the solution of the problem (1), (2) de-
pends on the real parts of the eigenvalues of matrices Ai,j in (1) if suitable
restrictions are imposed on functions fi and gi.

Notation. The letters R, C, N denote the sets of real, complex, and nat-
ural numbers, respectively. Let K ∈ {R, C} and N := {1, . . . , n}. C[X,Y ]
(resp. C1[X, Y ]) stand for spaces of continuous and continuously differen-
tiable mappings from the normed space X into the normed space Y . The
scalar product of two vectors u, v ∈ Km will be denoted by

(u|v) =
m

∑

i=1

uiv̄i.

For i ∈ N , mi ∈ N, and xi ∈ Kmi put m =
∑

i∈N mi and x = (x1, . . . , xn) ∈
Km. For real a1 < a2 < · · · < an we denote Ii = (a1, ai) ∪ (ai, an), I =
[a1, an]. The symbols Ai,j will stand for constant (mi ×mi) matrices, fi ∈
C[Ii ×Km,Kmi ], and gi ∈ C[Ii,Kmi ]. We will use the following norms:

‖xi‖ :=
√

(xi|xi),

‖A‖ :=

√

√

√

√

mi
∑

i,j=1

|ai,j |

for any matrix A = (ai,j)mi
i,j=1,

‖ϕi‖ := max
t∈I

‖ϕi(t)‖

for ϕi ∈ C[I,Kmi ] and

‖ϕ‖ :=
∑

i∈N

‖ϕi‖

for ϕ = (ϕ1, . . . , ϕn) ∈ C[I,Km].
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Definitions and lemmas

Definition 1. We say that

i) the function ϕ = (ϕ1, . . . , ϕn) ∈ C[I,Km] is a solution of system (1)
if ϕi ∈ C1[Ii,Kmi ] and if (1) is satisfied for xi = ϕi(t), i = 1, . . . , n;

ii) the solution ϕ of system (1) is a solution of problem (1), (2) if
ϕi(ai) = 0 (i = 1, . . . , n).

Consider the homogeneous part of system (1):

(t− ai)riy′i =





ri−1
∑

j=0

Ai,j · (t− ai)j



 yi, t ∈ Ii, i = 1, . . . , n, (3)

which consists of n independent subsystems.
The following lemma on local transformation is an easy reformulation of

the basic lemma in [10].

Lemma 1. There exist Ti, Si ∈ R, S1 = a1, T1 > a1, Sn < an, Tn = an,
Si < ai < Ti, i = 2, . . . , n− 1, and transformations

zi = Pi(t)yi, i = 1, . . . , n, t ∈ (Si, Ti) \ {ai}, (4)

with continuously differentiable matrices Pi(t), which transform the subsys-
tems of (3) into systems of the following special form:

(t− ai)riz′i =





ri−1
∑

j=0

Bi,j · (t− ai)j + Ci(t)



 zi, t ∈ (Si, Ti) \ {ai}, (5)

i = 1, . . . , n,

where Bi,j are quasidiagonal constant matrices with non-zero blocks
B1

i,j , . . . , B
ki
i,j,

Bk
i,0 =













λk
i0 γi 0 · · · 0 0
0 λk

i0 γi · · · 0 0
· · · · · · · ·
0 0 0 · · · λk

i0 γi

0 0 0 · · · 0 λk
i0













, k = 1, . . . , ki,

γi, i = 1, . . . , n, are arbitrary small pozitive numbers,

rank Bk
i,j = rank Bk

i,0 for j 6= 0

and Ci (i = 1, . . . , n) are continuous and bounded remainder terms such
that there exist limits

lim
t→ai

∥

∥

∥

Ci(t)
(t− ai)ri

∥

∥

∥ < +∞, i = 1, . . . , n.
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Remark 1. As the proof of the basic lemma in [10] shows, the trans-
formation matrix-functions Pi(t), i = 1, . . . , n, can be constructed in the
polynomial form

Pi(t) =
ri−1
∑

j=0

Pi,j · (t− ai)j

with the constant matrices Pi,j . It is the classical result that the matrices
Pi0 transforming Ai0 to the modified Jordan matrices are regular (see, for
example, [11]).

Definition 2. We say that system (1) satisfies the condition

CO1: if fi(t, 0, . . . , 0) ≡ 0 on the interval I and if there exist functions
µi ∈ C[Ii,R+] such that

‖fi(t, x)−fi(t, x̃)‖ 5 µi(t)‖x− x̃‖, for each (t, x), (t, x̃) ∈ Ii×Km

and
∫

Ii

µi(t)|t− ai|−ridt = Mi < ∞, i = 1, . . . , n;

CO2: if
∫

Ii

‖gi(t)‖ |t− ai|−ridt = Gi < ∞, i = 1, . . . , n.

Definition 3. We say that the ith subsystem of the transformed sys-
tem (5)

(t− ai)riz′i =





ri−1
∑

j=0

Bi,j · (t− ai)j + Ci(t)



 zi, t ∈ (Si, Ti) \ {ai}

satisfies the condition

CO3: if all eigenvalues of the matrix Bi,0 have nonpositive real parts and
those of them which lie on the imaginary axis of C are simple, i.e.,

Re λk
i0 5 0,

and if Re λk
i0 = 0 then mult λk

i0 = 1, l = 1, . . . , ki;
CO4: if for each k such that λk

i0 is simple and Re λk
i0 = 0 there exists

jk ∈ {1, . . . , ri − 1} such that

Re λk
i0 = Re Bk

i,1 = · · · = Re Bk
i,jk−1 = 0, Re Bk

i,jk
> 0; (6)

CO5: if for each k such that λk
i0 is simple and Re λk

i0 = 0 there is no
jk ∈ {1, . . . , ri − 1} with property (6);
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CO3’: if all eigenvalues of the matrix Bi,0 have nonnegative real parts and
those which lie on the imaginary axis of C are simple, i.e.,

Re λk
i0 = 0,

and if
Re λk

i0 = 0 then mult λk
i0 = 1, l = 1, . . . , ki;

CO4’: if for each k such that λk
i0 is simple and Re λk

i0 = 0 there exists
jk ∈ {1, . . . , ri − 1} such that

Re λk
i0 = Re Bk

i,1 = · · · = Re Bk
i,jk−1 = 0, Re Bk

i,jk
< 0; (7)

CO5’: if for each k such that λk
i0 is simple and Re λk

i0 = 0 there is no
jk ∈ {1, . . . , ri − 1} with property (7).

Definition 4. Let system (1) satisfy conditions CO1 and CO2. We say
that the ith equation of (1)

(t− ai)rix′i =





ri−1
∑

j=0

Ai,j · (t− ai)j



 xi + fi(t, x) + gi(t), t ∈ Ii,

has:

a) property UR,
b) property UR,
c) property UL,
d) property UL,

if its transformed homogeneous part, i.e., the ith subsystem of (5) satisfies
the conditions

a) CO3 ∧ CO5,
b) CO3’ ∧ CO4,
c) (CO3 for ri odd ∨ CO3’ for ri even) ∧ (CO5 with jk odd ∨ CO5’

with jk even),
d) (CO3’ for ri odd ∨ CO3 for ri even) ∧ (CO4 with jk odd ∨ CO4’

with jk even).

The following lemma summarizes some local topics of [7].

Lemma 2. Let the ith equation of (1) have property UR for some fixed
i ∈ {1, . . . , n − 1} [resp. have property UL for some fixed i ∈ {2, . . . , n}].
Then for Ti (resp. Si) sufficiently close to ai (Ti > ai, resp. Si < ai) there
exist constants L+

i (resp. L−i ) such that for any fundamental matrix Ψi of
the ith transformed subsystem of (5) we have

‖Ψi(t)Ψ−1
i (s)‖ 5 L+

i , for ai < s 5 t 5 Ti,
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resp.
‖Ψi(t)Ψ−1

i (s)‖ 5 L−i , for Si 5 t 5 s < ai.

Moreover, there are only trivial solutions of the ith subsystem of (5) on the
intervals (ai, Ti] (resp. [Si, ai)) which vanish at the singular point ai.

Corollary 1. Let the assumptions of Lemma 2 hold. Then there exists
a constant K+

i (resp. K−
i ) such that for any fundamental matrix Φi of the

ith subsystem of (3) we have

‖Φi(t)Φ−1
i (s)‖ 5 K+

i , for ai < s 5 t 5 an,

resp.
‖Φi(t)Φ−1

i (s)‖ 5 K−
i , for a1 5 t 5 s < ai.

Moreover, there are only trivial solutions of the ith subsystem of (3) on the
intervals (ai, an) [resp. (a1, ai)] which vanish at the singular point ai.

Proof. Lemma 2 implies that

‖Φi(t)Φ−1
i (s)‖ 5 ‖P−1

i (t)‖ · ‖Pi(s)‖L+
i , for ai < s 5 t 5 Ti,

resp.

‖Φi(t)Φ−1
i (s)‖ 5 ‖P−1

i (t)‖ · ‖Pi(s)‖L−i , for Si 5 t 5 s < ai,

where the terms on the right-hand sides are bounded for Ti (resp. Si)
sufficiently close to ai, because Pi0 in Remark 1 is regular. For each fixed
s the columns of Φi(t)Φ−1

i (s) are the solutions of the ith subsystem of (3)
with their norms bounded by supt∈(ai,Ti] ‖P

−1
i (t)‖ · ‖Pi(s)‖L+

i =: Q+
i (resp.

supt∈[Si,ai) ‖P
−1
i (t)‖·‖Pi(s)‖L−i =: Q−

i ) at some point of the interval [Ti, an)

(resp. (a1, Si]). Since ‖
ri−1
∑

j=0
Ai,j · (t − ai)j−ri‖ is bounded on the interval

[Ti, an] (resp. [a1, Si]), we have

‖ϕi(t)‖ 5 Q+
i eA+

i (an−Ti) resp. Q−
i eA−i (Si−a1)

for any column ϕi of Φi(t)Φ−1
i (s). Here

A+
i denote sup ‖

ri−1
∑

j=0

Ai,j · (t− ai)j−ri‖, t ∈ [Ti, an],

resp.

A−i denote sup ‖
ri−1
∑

j=0

Ai,j · (t− ai)j−ri‖, t ∈ [a1, Si].

Consequently,

‖Φi(t)Φ−1
i (s)‖ 5

√
miQ+

i eA+
i (an−Ti) =: K+

i (resp.
√

miQ−
i eA−i (Si−a1) =: K−

i )
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for ai < s 5 t 5 an (resp. a1 5 t 5 s < ai). The nonexistence of any
nontrivial solution vanishing at the point ai directly follows, as in Lemma
2, from the regularity of Pi0 and from the uniqueness of solutions of the ith
subsystem of (3) on the intervals [Ti, an] (resp. [a1, Si]).

Lemma 3. Let the ith equation of (1) has property UR for some fixed
i ∈ {1, . . . , n − 1} (resp. has property UL for some fixed i ∈ {2, . . . , n}).
Then for any (n−1)-tuple of functions ϕj ∈ C[I,Kmi ], j = 1, . . . , n, j 6= i,
all solutions of the equation

(t− ai)rix′i =





ri−1
∑

j=0

Ai,j · (t− ai)j



xi +

+fi(t, ϕ1(t), . . . , ϕi−1(t), xi, ϕi+1(t), . . . , ϕn(t)) + gi(t), t ∈ Ii, (8)

satisfy the ith subcondition of (2), i.e., xi(ai) = 0.

Proof. Without loss of generality, we can consider only the case of property
UR. Let us consider the mentioned ith equation of (1) transformed by the
the ith transformation from (4):

(t− ai)riz′i =





ri−1
∑

j=0

Bi,j · (t− ai)j



 zi +

+f̃i(t, ϕ1(t), . . . , ϕi−1(t), zi, ϕi+1(t), . . . , ϕn(t)) + g̃i(t), t ∈ (ai, Ti), (9)

where f̃i contain also the remainder term Ci(t)zi from (5):

f̃i(t, ϕ1(t), . . . , ϕi−1(t), zi, ϕi+1(t), . . . , ϕn(t)) ≡
≡ Pi(t)fi(t, ϕ1(t), . . . , ϕi−1(t), P−1

i zi, ϕi+1(t), . . . , ϕn(t)) + Ci(t)zi

and

g̃i(t) ≡ Pi(t)gi(t).

Due to the behavior of the ith transformation from (4), the continuity of
fi, gi and conditions CO1 and CO2 are invariant with respect to this
transformation. Let ψi be any solution of (9). If Ti is sufficiently close to
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ai, then for the derivative of the norm of ψi we have

d
dt
‖ψi(t)‖2 = 2Re(ψi(t)|





ri−1
∑

j=0

Bi,j(t− ai)j−ri



 ψi(t) +

+f̃i(t, ϕ1(t), . . . , ϕi−1(t), ψi(t), ϕi+1(t), . . . , ϕn(t)) + g̃i(t)) =

=



(2Re λ− ε)(t− ai)L−ri − µ̃i(t)





∑

j∈N\{i}

‖ϕj(t)‖







 · ‖ψi(t)‖2 −

−‖g̃i(t)‖ · ‖ψi(t)‖,

where ε > 0 is arbitrarily small, the term µ̃i(t) ·
(

∑

j∈N\{i} ‖ϕj(t)‖
)

is

bounded on the considered interval, L 5 ri − 1 is a greater value of jk-s in
the condition CO4 or L = 0 if no jk exists, and Re λ is the smallest value
of Re λk

jk
for jk = L, i.e.,

Re λ = min{Re λk
jk

, jk = L} > 0.

Consequently,

‖ψi(t)‖′ =
Re λ

2
(t− ai)L−ri‖ψi(t)‖ − ‖g̃i‖ =

Reλ
2(t− ai)

‖ψi(t)‖ − ‖g̃i‖

for Ti sufficiently close to ai; hence

‖ψi(t)‖ 5

(

( ‖ψi(Ti)‖
(Ti − ai)

Re λ
2

+
(Ti − ai)1−

Re λ
2

1− Re λ
2

‖g̃i‖
)

(t− ai)
Re λ

2 −

− ‖g̃i‖
1− Re λ

2

(t− ai)

)

,

where the last term tends to zero as t → ai+. This implies that each
solution ϕi = P−1

i ψi of (8) on (ai, Ti) vanishes at the point ai, too.

Corollary 2. Let the assumptions of Lemma 3 hold. Then there exists
a constant K+

i > 0 (resp. K−
i > 0) such that any fundamental matrix Φi

of the ith subsystem of (3) satisfies

‖Φi(t)Φ−1
i (s)‖ 5 K+

i resp. K−
i

for

ai < t 5 s < an resp. a1 < s 5 t < ai.
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Proof. Each column of Φi(t)Φ−1
i (s) is a solution of the ith equation of (1)

for fi ≡ gi ≡ 0 on some interval (ai, Ti) (resp. (Si, ai)). Such a solution
vanishes at the point ai and its extension on the interval (s, an) (resp.

(a1, s)) is bounded because
ri−1
∑

j=0
Ai,j · (t − ai)j−ri is bounded there, too.

Thus ‖Φi(t)Φ−1
i (s)‖ is bounded on the interval [ai, an] (resp. [a1, ai]) (and

vanishes at ai), too.

Main results

Let us consider system (1). Denote by NL and NR the sets of all indices
i for which the ith equation of (1) has property UL or UR, respectively, and
by N0

L, N0
R the sets of all indices i for which the ith equation of (1) has

property UL or UR, respectively. Then we have

Theorem 1. Let

card NL + card NR + card N0
L + card N0

R = 2(n− 1)

and let the inequality

n
∑

i=1

KiMi < 1 (10)

hold.
Then there exists just a

(∑

i∈NL
mi +

∑

i∈NR
mi

)

-parametric family of
solutions of problem (1), (2).

Proof. Let ϕ = (ϕ1, . . . , ϕn) be a solution of problem (1), (2). Then its
ith component ϕi can be written in one of the following forms. If i ∈
N \ (NL ∪NR), then

ϕi(t) =

t
∫

ai

Φi(t)Φ−1
i (s)[fi(s, ϕ(s)) + gi(s)](s− ai)−rids, t ∈ I; (11)

if i ∈ N \ (N0
L ∪N0

R), then

ϕi(t) =



















Φi(t)Φ−1
i (a1)ϕi(a1) +

∫ t
a1

Φi(t)Φ−1
i (s)[fi(s, ϕ(s))+

+gi(s)](s− ai)−rids, t ∈ [a1, ai],
Φi(t)Φ−1

i (an)ϕi(an) +
∫ t

an
Φi(t)Φ−1

i (s)[fi(s, ϕ(s))+
+gi(s)](s− ai)−rids, t ∈ [ai, an];

(12)
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if i ∈ N0
R ∩ (N \N0

L), then

ϕi(t) = Φi(t)Φ−1
i (a1)ϕi(a1) +

+

t
∫

a1

Φi(t)Φ−1
i (s)[fi(s, ϕ(s)) + gi(s)](s− ai)−rids, t ∈ I, (13)

and, finally, if i ∈ N0
L ∩ (N \N0

R), then

ϕi(t) = Φi(t)Φ−1
i (an)ϕi(an) +

+

t
∫

an

Φi(t)Φ−1
i (s)[fi(s, ϕ(s)) + gi(s)](s− ai)−rids, t ∈ I. (14)

Here ϕi(a1) ∈ Kmi , i ∈ NL, ϕi(an) ∈ Kmi , i ∈ NR, are arbitrary constants.
Lemma 3 and Corollaries 1 and 2 ensure that the above integrations are
correct. On the other hand, the solutions of the system of integral equations
(11)–(14) are the solutions of problem (1), (2) which satisfy the boundary
conditions

xi(a1) = ϕi(a1), i ∈ NL,

xi(an) = ϕi(an), i ∈ NR.
(15)

Thus for any fixed values of ϕi(a1) ∈ Kmi , i ∈ NL, ϕi(an) ∈ Kmi , i ∈ NR,
problem (1), (2), (15) is equivalent to the system of integral equations (11)–
(14). Define the integral operator F by means of the right sides of (11)–(14),
which maps C[I,Km] into itself and denote

Ii(ζ, ξ) :=

ξ
∫

ζ

Φi(t)Φ−1
i (s)[fi(s, ϕ(s)) + gi(s)](s− ai)−rids.

Denote by B(c,R) a ball in the space C[I,Km] with radius R and center at
the fundamental solution of the homogeneous part of (1) c = (c1, . . . , cn),
where

ci(t) =































0, t ∈ I, i ∈ N \ (NL ∪NR),
Φi(t)Φ−1

i (a1)ϕi(a1), t ∈ I, i ∈ NL \NR,
Φi(t)Φ−1

i (a1)ϕi(a1), t ∈ [a1, ai], i ∈ NL ∩NR,
Φi(t)Φ−1

i (an)ϕi(an), t ∈ [ai, an], i ∈ NL ∩NR,
Φi(t)Φ−1

i (an)ϕi(an), t ∈ I, i ∈ NR \NL.
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For any ϕ ∈ B(c,R) we get

‖Fϕ− c‖ 5
∑

i∈N\(NL∪NR)

sup
t∈Ii

‖Ii(ai, t)‖+

+
∑

i∈(NL∩NR)

max{ sup
t∈(a1,ai)

‖Ii(a1, t)‖, sup
t∈(ai,an)

‖Ii(an, t)‖}+

+
∑

i∈(NL\NR)

sup
t∈Ii

‖Ii(a1, t)‖+
∑

i∈(NR\NL)

sup
t∈Ii

‖Ii(an, t)‖ 5

5
∑

i∈N

Ki(Mi‖ϕ‖+ Gi) 5

5

(

∑

i∈N

KiMi

)

‖ϕ− c‖+
∑

i∈N

Ki(Mi‖c‖+ Gi). (16)

Since
∑

i∈N KiMi < 1, we can select a radius R such that
(

1−
∑

i∈N

KiMi

)

R >

(

∑

i∈N

Ki(Mi‖c‖+ Gi)

)

.

The last inequality implies that the operator F maps the ball B(c,R) into
itself.

Similarly, we obtain the estimate

‖Fϕ− Fϕ̃‖ 5

(

∑

i∈N

KiMi

)

‖ϕ− ϕ̃‖ for any pair ϕ, ϕ̃ ∈ B(c,R); (17)

hence F is a contraction. The Banach theorem gives the existence of a
unique solution of the system of integral equations (11)–(14) satisfying
condition (15). This solution is simultaneously the solution of problem
(1), (2) which satisfies the condition (15). The values ϕi(a1), i ∈ NL,
ϕi(an), i ∈ NR occurring in (15) can be selected arbitrarily and the total
dimension of (15) is

∑

i∈NL
mi +

∑

i∈NR
mi.

Remark 2. Condition (10) is substantial in view of the following example.

Example. Consider a linear problem

x′1 = −x1

t
+ 2(x1 − x2), t ∈ (0, 1), (18)

x′2 = − x2

t− 1
+ 2(x1 − x2), t ∈ (0, 1), (19)

x1(0) = x2(1) = 0. (20)
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Equation (18) has property UR at its singular point a1 = 0 and equation
(19) has property UL at the singular point a2 = 1. However, there exists a
one-parametric system of solutions of problem (18), (19), (20)

x1 = ct, x2 = c(t− 1), c ∈ K

where c is arbitrary. This happens because condition (10) does not hold. In
fact, we have

K1M1 + K2M2 = 4 > 1

where

K1 = sup
0<s≤t≤1

s
t

= 1,

K2 = sup
0≤t≤s<1

s− 1
t− 1

= 1,

µ1 = 2, µ2 = 2

and so M1 =

1
∫

0

2dt = 2, M2 = 2.

The next Theorem 2 indicates the special case where condition (10) can
be omitted.

Theorem 2. Let

card NL = card N0
R = n− 1,

or
card N0

L = card NR = n− 1.

Then there exists just a
(∑

i∈NL
mi

)

-parametric [resp. a
(∑

i∈NR
mi

)

-pa-
rametric] family of solutions of problem (1), (2).

Proof. The system of integral equations in the proof of Theorem 1 reduces
to (13) in the first case or to (14) in the second case. Let us consider the
first case and define a new norm in the space C[I,Km]:

‖ϕ‖p := max
t∈I

(

‖ϕ(t)‖e−p(t−a1)
)

.

The following estimates hold:

‖Ii(a1, t)‖e−p(t−a1) 5

5 Ki



Mi

t
∫

a1

‖ϕ(s)‖e−p(s−a1)ep(s−a1)ds + Gi



 e−p(t−a1) 5
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5 Ki



Mi‖ϕ‖p

t
∫

a1

ep(s−a1)ds + Gi



 e−p(t−a1) 5

5 Ki

(

Mi
‖ϕ‖p

p
(ep(t−a1) − 1) + Gi

)

e−p(t−a1) 5

5 Ki

(

Mi
‖ϕ‖p

p
+ Gi

)

, i ∈ N.

So estimate (16) has the form

‖Fϕ− c‖p 5
∑

i∈N

Ki

(

Mi
‖ϕ‖p

p
+ Gi

)

5

5

∑

i∈N KiMi

p
‖ϕ− c‖p +

∑

i∈N

Ki

(

Mi
‖c‖p

p
+ Gi

)

.

Similarly we obtain the modification of estimate (17)

‖Fϕ− Fϕ̃‖p 5

∑

i∈N KiMi

p
‖ϕ− ϕ̃‖p.

When we select p such that

p >
∑

i∈N

KiMi,

the proof can be completed as that of Theorem 1.
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