
GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 3, 1995, 225-236

ON STRUCTURE OF SOLUTIONS OF A SYSTEM OF
FOUR DIFFERENTIAL INEQUALITIES

MIROSLAV BARTUŠEK

Abstract. The aim of the paper is to study a global structure of
solutions of four differential inequalities

αiy′i(t)yi+1 ≥ 0, yi+1(t) = 0 ⇒ y′i(t) = 0, i = 1, 2, 3, 4 ,

αi ∈ {−1, 1}, α1α2α3α4 = −1

with respect to their zeros. The structure of an oscillatory solution is
described, and the number of points with trivial Cauchy conditions is
investigated.

1. Introduction

The aim of this paper is to investigate the global structure with respect
to zeros of solutions of the system of differential inequalities

αiy′i(t)yi+1 ≥ 0,

yi+1(t) = 0 ⇒ y′i(t) = 0, i ∈ N4, t ∈ J,
(1)

where J = (a, b), −∞ ≤ a < b ≤ ∞, y5 = y1, N4 = {1, 2, 3, 4}

αi ∈ {−1, 1}, α1α2α3α4 = −1 . (2)

y = (y1, y2, y3, y4) is called a solution of (1) if yi : J → R, R = (−∞,∞) is
locally absolutely continuous and (1) holds for all t ∈ J such that y′i exists.

Let us mention two special cases of (1) which are often studied; see, for
example, [1-4] (and the references therein).

(a) A system of four differential equations

y′i = fi(t, y1, y2, y3, y4), i ∈ N4 ,

αifi(t, x1, x2, x3, x4)xi+1 ≥ 0 ,

xi+1 = 0 ⇒ fi(t, x1, x2, x3, x4) = 0 on D, i ∈ N4,
(3)
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where (2) holds, x5 = x1, fi : D = R5 → R fulfills the local Carathéodory
conditions, i ∈ N4.

(b) A fourth-order differential equation with quasiderivatives

L4x(t) = f(t, L0x, L1x, L2x, L3x) ,

f(t, x1, x2, x3, x4)x1 ≤ 0, f(t, 0, x2, x3, x4) = 0,
(4)

where f : R5 → R fulfills the local Carathéodory conditions, aj : R → R is
continuous and positive, j = 0, 1, 2, 3, 4, and Ljx is the jth quasiderivative
of x : L0x = a0(t)x, Lix = ai(t)(Li−1x)′, i ∈ N4.

By the use of the standard transformation we can see that (4) is a special
case of (3): yj = Lj−1x, j ∈ N4,

y′i =
yi+1

ai(t)
, i = 1, 2, 3, y′4 =

1
a4(t)

f(t, y1, y2, y3) . (5)

In [1] the structure of oscillatory solutions (defined in the usual sense)
was studied for the fourth-order differential equation (4), aj ≡ 1. It was
shown that two different types of them can exist and their structure was
described. For example, for every type the zeros of a solution y and its
derivatives y(i), i = 1, 2, 3 are uniquely ordered. This information allows a
more profound study of the asymptotic behavior. In [2] it was shown that
the zeros of components of a solution of (1) (under further assumptions) are
simple in some neighborhood of their cluster point (the zero τ of yi, i ∈ N4,
is simple if yi+1(τ) 6= 0 holds).

In the present paper the above-mentioned results are generalized for (1).

Notation. Let y be a solution of (1). Put Y1 = y1, Y2 = α1y2,
Y3 = α1α2y3, Y4 = α1α2α3y4, Yi+4k = Yi, yi+4k = yi, i ∈ N4, k ∈ Z =
{. . . ,−1, 0, 1, . . . }.

Definition 1. Let y : (a, b) → R4 be a solution of (1). Then y is called
trivial if yi(t) = 0 in (a, b), i ∈ N4. Let c be a point such that c ∈ (a, b),
yi(c) = 0, i ∈ N4, holds. Then c is called a Z-point of y.

Definition 2. Let y : (a, b) → R4 be a solution of (1). Then y has
Property W if for every i ∈ N4

(a) there exists at most one maximal bounded interval J ⊂ (a, b) such
that either

yi(t) = yi+1(t) = yi+2(t) = 0, yi+3(t) 6= 0, t ∈ J,

or
yi(t) = yi+2(t) = 0, yi+1(t)yi+3(t) 6= 0, t ∈ J ;

(b) there exist at most two maximal bounded intervals J, J1 ⊂ (a, b),
J ∩ J1 = ∅ such that yi(t) = yi+1(t) = 0, yi+2(t)yi+3(t) 6= 0 in J ∪ J1.
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For the study of the structure of solutions of (1) we define the following
types. Let y : J = (a, b) → R4.

Type I(s, s̄): For given s ∈ Z ∪ {−∞}, s̄ ∈ Z ∪ {∞}, s̄ ≥ s − 1 there
exist si, s̄i and the sequences {tik}, {t̄ik}, k ∈ {si, si +1, . . . , s̄i}, i ∈ N4 such
that s1 = s, s̄1 = s̄, si ∈ {s1−1, s1}, sj ≥ sj−1, s̄i ∈ {s̄1−1, s̄1}, s̄j ≤ s̄j+1,
j = 2, 3, 4, s̄5 = s̄1 holds and for all admissible k we have

t1k ≤ t̄1k < t4k ≤ t̄4k < t3k ≤ t̄3k < t2k ≤ t̄2k < t1k+1 ≤ t̄1k+1 ,

Yi(t) = 0 for t ∈ [tik, t̄ik], Yi(t) 6= 0 for t ∈ J −
s̄i
⋃

k=si

[tik, t̄ik] ,

Yj(t)Y1(t) > 0 for t ∈ (t̄1k, tjk) ,

< 0 for t ∈ (t̄jk, t1k+1), j = 2, 3, 4, i ∈ N4 .

Moreover, for i ∈ N4, cd = −1, where c(d) is the sign of Yi in some left
(right) neighborhood of tik (t̄ik). If s = −∞ (s̄ = ∞), then limk→−∞ tik = a
(limk→∞ tik = b) holds.

Type II(s, s̄): For given s ∈ Z ∪ {−∞}, s̄ ∈ Z ∪ {∞}, s̄ ≥ s − 1 there
exist si, s̄i and the sequences {tik}, {t̄ik}, k ∈ {si, si +1, . . . , s̄i}, i ∈ N4 such
that s1 = s, s̄1 = s̄, si ∈ {s1−1, s1}, sj ≤ sj−1, s̄j ∈ {s̄1−1, s̄1}, s̄j ≤ sj−1,
j = 2, 3, 4, and for all admissible k

t1k−1 ≤ t̄1k−1 < t2k ≤ t̄2k < t3k ≤ t̄3k < t4k ≤ t̄4k < t1k ≤ t̄1k ,

Yi(t) = 0 for t ∈ [tik, t̄ik], Yi(t) 6= 0 for t ∈ J −
s̄i
⋃

k=si

[tik, t̄ik] ,

(−1)j+1Yj(t)Y1(t) > 0 for t ∈ (t̄1k−1, t
j
k)

< 0 for t ∈ (t̄jk, t1k), j = 2, 3, 4, i ∈ N4,

hold. Moreover, if i ∈ N4, cd = −1, where c (d) is the sign of Yi in some left
(right) neighborhood of tik (t̄ik). If s = −∞(s̄ = ∞), then limk→−∞ tik = a
(limk→∞ tik = b) holds.

Type III. There exist j ∈ N4, τ ∈ {−1, 1} such that

τYj(t) ≥ 0, τciYj+1(t) > 0, t ∈ J, i = 1, 2, 3 ,

|Yj+k| is nondecreasing, |Yj+3| is nonincreasing on J , k = 0, 1, 2, where
c1 = 1 for j = 1, 2, 3, c1 = −1 for j = 4, c2 = 1 for j = 1, 2, c2 = −1 for
j = 3, 4, c3 = 1 for j = 1, c3 = −1 for j = 2, 3, 4.
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Type IV. There exist j ∈ N4, τ ∈ {−1, 1} such that

τYj(t) ≥ 0, τciYj+i(t) > 0, t ∈ J, i = 1, 2, 3 ,

|Yj | is nondecreasing, |Yj+k| is nonincreasing in J , k = 1, 2, 3, where c1 = 1
for j = 1, 2, 3, c1 = −1 for j = 4, c2 = 1 for j = 3, 4, c2 = −1 for j = 1, 2,
c3 = 1 for j = 1, c3 = −1 for j = 2, 3, 4.

Type V. There exist j ∈ N4, τ ∈ {−1, 1} such that

Yj = 0, τYj+1(t) ≥ 0, τcYj+3(t) > 0, sign Yj+2(t) is

constant in J where c = 1 for j = 3, 4, c = −1 for j = 1, 2.

Type VI. y ≡ 0 in J .

Remark 1. The solutions of either Type I(s,∞) or II(s,∞) are called
oscillatory. The solutions of Type III, IV, V are usually called nonoscillatory.

Definition 3. Let y : (a, b) → R4 and let Ai, i = 0, 1, . . . , s be one of
Types I - VI. y is successively of Types A1, A2, . . . , As if numbers τ0, . . . , τs

exist such that a = τ0 ≤ τ1 ≤ · · · ≤ τs = b and y is of Type Aj on (τj−1, τj),
j = 1, 2, . . . , s. At the same time, if y is of Type A in (τ, τ), then Type A
is missing.

2. Main results

Theorem 1. Let y : J = (a, b) → R4, −∞ ≤ a < b ≤ ∞ be a solution
of (1).

(i) Let Z-points of y not exist in J . Then numbers s, s̄, r, r̄ exist such
that s, r ∈ Z ∪ {−∞}, s̄, r̄ ∈ Z ∪ {∞} and y is successively of Types IV,
II (s, s̄), V, I (r, r̄), III on J ; if r = −∞ (s̄ = +∞), then Types IV, II, V
(Types V, I, III) are missing, if r̄ = ∞ (s = −∞), then Type III (Type IV)
is missing. Moreover, y has Property W.

(ii) Let y have the only Z-point τ in J . Then

(a) y is either of Type I(s,∞) or of Type II(s,∞) in some left neigh-
borhood of τ , where s ∈ Z is a suitable number;

(b) y is either of Type I(−∞, s) or of Type II(−∞, s) in some right
neighborhood of τ , where s ∈ Z is a suitable number.

(iii) Let τ , τ1, a < τ < τ1 < b be Z-points of y and let no Z-point of y
exist in (τ, τ1). Then y is either of Type I(−∞,∞) or of Type II(−∞,∞)
or numbers s, r exist such that s, r ∈ Z and y is successively of Types
II(−∞, s), V, I(r,∞) in (τ, τ1). In the last case Types I, II are always
present.

Remark 2. Let i ∈ N4. Consider (1) with an extra condition

αiy′i(t)yi+1(t) > 0 for yi+1(t) 6= 0 .
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Let y be a solution of this problem, y : J = (a, b) → R4, a < b. If y is
either of Type I or II, then tik = t̄ik for all admissible k. If y is either of
Type III or IV or V, then the relation

yi+1 6= 0 on I ⇒ yi 6= 0 on I

holds. Note that in the case of the system (3) an extra condition

αifi(t, x1, x2, x3, x4)xi+1 > 0 for xi+1 6= 0

is added. The following theorem gives some conditions under which a non-
trivial solution of (3) has no Z-points.

Theorem 2. Let ε > 0, ε̄ > 0, K > 0, and y : J = (a, b) → R4

be a nontrivial solution of (3). Let nonnegative functions ai ∈ Lloc(R),
gi ∈ C◦([0, ε]), i ∈ N4 exist such that gi is nondecreasing, gi(0) = 0,

|fi(t, x1, . . . , x4)| 5 ai(t) gi(|xi+1|) on R× [−ε, ε]4, i ∈ N4, (6)

and

g1(ε̄g2(ε̄g3(ε̄g4(z)))) ≤ Kz, z ∈ [0, ε], (7)

hold, where x4i+j = xi, i ∈ Z, j ∈ N4. Then y has no Z-point in J and the
statement (i) of Theorem 1 holds.

Remark 3.
1. Theorem 2 generalizes the well-known condition for the nonexistence of
Z-points of a nontrivial solution:

ε > 0, |fi(t, x1, . . . , x4)| ≤ d(t)
4

∑

i=1

|xi|,

t ∈ R, |xi| ≤ ε, i ∈ N4, d ∈ Lloc(R)

(i.e., the Lipschitz condition for y ≡ 0; for (4), aj ≡ 1 see [3]).
2. The condition (7) cannot be replaced by

δ > 0, g1(ε̄g2(ε̄g3(ε̄g4(z)))) ≤ Kz1−δ, z ∈ [0, ε] . (8)

In [4] where sufficient conditions are given for the existence of a solution of
(3) with a Z-point (when studying singular solutions of the 1st kind), the
inequality (8) is fulfilled but (7) is not.

3. Let k ∈ N4. Then (7) can be replaced by

gk(ε̄gk+1(ε̄gk+2(ε̄gk+3(z)))) ≤ Kz, z ∈ [0, ε],

where g4k+j = gj , j ∈ N4, k ∈ N . The proof is similar.
The last part is devoted to equation (4). It is proved that for every

solution x at most one maximal interval exists on which x is trivial.
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Theorem 3. Let x : J = (a, b) → R be a nontrivial solution of (4) and
let yi = Li−1x, i ∈ N4, y = (yi)4i=1.

(i) Let the number ε > 0 and a nonnegative function d ∈ Lloc(R) exist
such that

|f(t, x1, x2, x3, x4)| ≤ d(t)|x1| for t ∈ R, |xi| ≤ ε, i ∈ N4.

Then the statement (i) of Theorem 1 holds.
(ii) Let aj ∈ C1(R), j = 1, 2, a3

a1
∈ C2(R). Then either the statement (i)

of Theorem 1 holds or numbers s ∈ Z ∪{−∞}, r ∈ Z ∪{∞} exist such that
y is successively of Types IV, II(s,∞), VI, I(−∞, r), III in J ; if s = −∞
(r = ∞), then Type IV (Type III) is missing; if Type I (II) is missing, then
Type III (IV) is missing, too.

(iii) y has Property W .

Remark 4. Let y have a Z-point. Then the intervals from the definition
of Property W do not exist.

3. Proof of the main results

We start with some lemmas.

Lemma 1. Let y be a solution of (1) defined on the interval I.

(a) Let j ∈ {2, 3, 4} and Yj(t) ≥ 0 (≤ 0) on I. Then Yj−1 is nonde-
creasing (nonincreasing) in I.

(b) If Y1 ≥ 0 (Y1 ≤ 0) on I, then Y4 is nonincreasing (nondecreasing)
in I.

(c) Let j ∈ N4, Yj(t) = 0 on I. Then Yj−1 is constant in I.

Proof. (a) Let j = 2, Y2(t) = α1y2(t) ≥ 0 on I. As by (1) α1y′1(t)y2(t) ≥ 0
we have y′1 = Y ′

1 ≥ 0 for almost all t ∈ I. In the other cases the proof is
similar.

(b) Let Y1 ≥ 0 in I. By (1) α4y′4y1 ≥ 0 holds. Then, according to (2)

Y ′
4(t) = α1α2α3y′4(t) = −α4y′4(t)y1(t) ≤ 0 .

The case (c) is a consequence of (a), (b).

Remark 5. The conclusions about the monotonicity in the definitions of
Types III–V follow directly from Lemma 1.

Lemma 2. Let y I = [t1, t2] → R4 be a solution of (1), i ∈ N4, Yi(t1) =
Yi+1(t) = 0, Yi+2(t) 6= 0 on I. Then either

Yi ≡ Yi+1 ≡ 0 on I (9)

or there exists a number τ ∈ [t1, t2) such that Yi(t) ≡ Yi+1 ≡ 0 in [t1, τ ]
and c Yi+1(t)Yi+2(t) > 0 in (τ, t2] hold, where c = 1 (c = −1) for i = 1, 2, 4
(i = 3).
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Proof. Suppose that (9) is not valid and i = 1, Y3(t) > 0 on I. Then
by Lemma 1 the function Y2 is nondecreasing, Y2 ≥ 0 in I, and Y1 is
nondecreasing, Y1 ≥ 0 in I, too. From this and according to Lemma 1(c)
there exists τ ∈ [t1, t2) such that

Y1 ≡ Y2 ≡ 0 on [t1, τ ] , (10)

Y 2
1 (t) + Y 2

2 (t) > 0 on (τ, t2) . (11)

Suppose that Y2(t) = 0 in some right neighborhood I1 of τ . Then by (1) we
have y′1(t) = 0 for almost all t ∈ I1 and according to (10) y1(t) = Y1(t) = 0
on I. This contradiction to (11) proves the statement for i = 1. For the
other i the proof is similar.

Proof of Theorem 1. (i) Let t0 ∈ J be an arbitrary number. Divide all
possible initial conditions at t ∈ J into 32 cases:

1◦ Y1Y4 ≥ 0, YiY4 > 0, i=2, 3, 17◦ Y1 =Y2 =0, Y3Y4 > 0
2◦ Y1Yi > 0, Y4Y1 ≤ 0, i=2, 3, 18◦ Y1 =Y2 =0, Y3Y4 < 0
3◦ YiY4 < 0, Y3Y4 ≥ 0, i=1, 2, 19◦ Y1 =Y3 =0, Y2Y4 > 0
4◦ Y1Yi < 0, Y1Y2 ≤ 0, i=3, 4, 20◦ Y1 =Y3 =0, Y2Y4 < 0
5◦ Y1Y3 ≤ 0, YiY3 < 0, i=2, 4, 21◦ Y1 =Y4 =0, Y2Y3 > 0
6◦ YiY3 < 0, Y2Y3 ≥ 0, i=1, 4, 22◦ Y1 =Y4 =0, Y2Y3 < 0
7◦ YiY2 < 0, Y2Y3 ≤ 0, i=1, 4, 23◦ Y2 =Y3 =0, Y1Y4 > 0
8◦ YiY2 < 0, Y2Y4 ≥ 0, i=1, 3, 24◦ Y2 =Y3 =0, Y1Y4 > 0
9◦ Y1 =0, YiY4 < 0, i=2, 3, 25◦ Y2 =Y4 =0, Y1Y3 > 0
10◦ Y1 =0, Y2Yi < 0, i=3, 4, 26◦ Y2 =Y4 =0, Y1Y3 < 0
11◦ YiY4 > 0, Y2 =0, i=1, 3, 27◦ Y3 =Y4 =0, Y1Y2 > 0
12◦ YiY4 < 0, Y2 =0, i=1, 3, 28◦ Y3 =Y4 =0, Y1Y2 < 0
13◦ Y1Yi > 0, Y3 =0, i=2, 4, 29◦ Y1 =Y2 =Y3 =0, Y4 6= 0
14◦ Y1Yi < 0, Y3 =0, i=2, 4, 30◦ Y1 =Y3 =Y4 =0, Y2 6= 0
15◦ YiY3 < 0, Y4 =0, i=1, 2, 31◦ Y1 =Y2 =Y4 =0, Y3 6= 0
16◦ Y1Yi < 0, Y4 =0, i=2, 3, 32◦ Y2 =Y3 =Y4 =0, Y1 6= 0.

Note that the last case Yi = 0, i ∈ N4, is impossible in view of the
assumptions of the theorem. Sometimes, if, for example, 1◦ is valid at t̄ we
shall write 1◦(t̄).

We shall investigate how the initial conditions vary when t increases in
[t0, b). First note that for J1 ⊂ [t0, b), y is of

Type III in J1 iff one of the cases 1◦ – 4◦ holds in J1;

Type IV in J1 iff one of the cases 5◦ – 8◦ holds in J1;

Type V in J1 iff one of the cases 9◦ – 32◦ holds in J1











(12)

(see Remark 5, too).
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Consider y in J1 = [t0, b̄), b̄ ≤ b. Let j, k ∈ {1, 2, . . . , 32◦}. The symbol
j◦(t0) → k◦(t1) denotes that either j◦ holds in J1 (and y is one of Types
III–V according to (12)) or t1, t2 ∈ J1, t0 < t2 < t1 exist such that j◦ holds
in [t0, t2), k◦ holds in (t2, t1] and either j◦ or k◦ is valid at t2. Generally, the
notation j◦(t0) → {k◦1 , . . . , k◦s}(t1) denotes that j◦(t0) → k◦e(t1) is valid for
suitable e ∈ {1, . . . , s}. The following relations can be proved for y defined
in [t0, b)

1◦(t0) → 2◦(t1), 2◦(t0) → 3◦(t1), 3◦(t0) → 4◦(t1), 4◦(t0) → 1◦(t1),

5◦(t0) → {6◦, 13◦, 15◦, 18◦, 19◦, 23◦, 26◦, 27◦, 29◦, 32◦}(t1),
6◦(t0) → {7◦, 9◦, 16◦, 20◦, 21◦, 23◦, 26◦, 28◦, 30◦, 32◦}(t1),
7◦(t0) → {8◦, 10◦, 11◦, 17◦, 20◦, 21◦, 23◦, 26◦, 28◦, 30◦, 32◦}(t1),
8◦(t0) → {5◦, 12◦, 14◦, 18◦, 19◦, 22◦, 24◦, 25◦, 29◦, 31◦}(t1),
9◦(t0) → {2◦, 20◦}(t1), 10◦(t0) → {3◦, 17◦}(t1),
11◦(t0) → {1◦, 25◦}(t1), 12◦(t0) → {2◦, 24◦}(t1),
13◦(t0) → {1◦, 27◦}(t1), 14◦(t0) → {4◦, 19◦}(t1),
15◦(t0) → {3◦, 26◦}(t1), 16◦(t0) → {4◦, 21◦}(t1),
17◦(t0) → 1◦(t1), 18◦(t0) → {2◦, 9◦, 29◦}(t1),
19◦(t0) → {1◦, 13◦}(t1), 20◦(t0) → {3◦, 10◦}(t1),
21◦(t0) → 2◦(t1), 22◦(t0) → {3◦, 15◦, 31◦}(t1),
23◦(t0) → {1◦, 11◦, 32◦}(t1), 24◦(t0) → 4◦(t1),

25◦(t0) → {2◦, 12◦}(t1), 26◦(t0) → {4◦, 16◦}(t1),
27◦(t0) → 3◦(t1), 28◦(t0) → {4◦, 14◦, 30◦}(t1),
29◦(t0) → {1◦, 17◦}(t1), 30◦(t0) → {3◦, 27◦}(t1),
31◦(t0) → {2◦, 21◦}(t1), 32◦(t0) → {4◦, 24◦}(t1), t1 ∈ (t0, b).























































































































































(13)

We prove only the validity of

18◦(t0) → {2◦, 9◦, 29◦}(t1) . (14)

The other relations can be proved similarly. Thus suppose for simplicity
that

Y1(t0) = Y2(t0) = 0 , Y3(t0) > 0, Y4(t0) < 0

holds. Then, according to Lemma 1, Y2 is nonincreasing in some right neigh-
borhood of t0 and Y1, Y2 are nondecreasing, Y4 nonincreasing until Y2 ≥ 0.
From this and according to Lemma 2 one of the following possibilities is
valid:

(i) Y1 ≡ Y2 ≡ 0, Y3 > 0, Y4 < 0 in [t0, b) (i.e., y is of Type V);
(ii) t1, t1 ∈ (t0, b) exists such that Y1 ≡ Y2 ≡ 0, Y4 < 0 in [t0, t1],

Y3(t) > 0 in [t0, t1), Y3(t1) = 0 (i.e., 29◦ holds at t1);
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(iii) t1, t1 ∈ (t0, b) exists such that Y1 ≡ Y2 ≡ 0, Y3 > 0, Y4 < 0 in [t0, t1],
Y1 = 0, Y2 > 0 in some right neighborhood J2 of t1 (i.e., 9◦ holds
in J2)

(iv) t1, t1 ∈ (t0, b) exists such that Y1 ≡ Y2 ≡ 0, Y3 > 0, Y4 < 0 on
[t0, t1], Y1 = 0, Y2 > 0, Y3 > 0, Y4 < 0 in some right neighborhood
J2 of t1 (i.e., 2◦ holds in J2).

From this we can conclude that (14) holds. Further, note that if the cases
1◦, 2◦, 3◦, 4◦ are repeated, 1◦ → 2◦ → 3◦ → 4◦ → 1◦, we get just the solution
of Type I; in the case 5◦ → 6◦ → 7◦ → 8◦ → 5◦, we get Type II.

Let y be either of Type I(s,∞) or of Type II(s,∞) on the interval [t0, b̄),
b̄ ≤ b. We prove by an indirect method that b̄ = b. Suppose that b̄ < b.
As y is oscillatory, yi(b̄) = 0, i ∈ N4 is valid and b̄ is a Z-point of y. The
contradiction to the assumptions of the theorem proves that b̄ = b.

The statement of the theorem for the interval [t0, b) follows from this and
from (13). The statement in (a, t0] can be proved similarly, or the fact that
t0 is arbitrary can be used.

(ii) (a) If τ, τ ∈ J , is a Z-point of y, then yi(τ) = 0, i ∈ N4 and the only
types which can fulfill these conditions are I(s,∞), II(s,∞), s ∈ Z. Thus
the statement follows from (i). The case (b) can be proved similarly.

(iii) The statement follows directly from (i), (ii).

Proof of Remark 2. It can be proved similarly to Lemma 1 that the following
two statements hold:

(a) If i ∈ {2, 3, 4}, Yi(t) > 0 (< 0) in I, then Yj−1 is increasing (de-
creasing) in I.

(b) If Y1(t) > 0 (< 0) in I, then Y4 is decreasing (increasing) in I.

The statement of the remark follows from this.

Proof of Theorem 2. On the contrary, suppose that a Z-point τ ∈ J exists.
Without loss of generality we can suppose that τ is such that a right neigh-
borhood of τ exists in which y is not trivial (for a left neighborhood the
proof is similar).

As yi(τ) = 0, i ∈ N4, an interval J1 = [τ, τ + δ], δ > 0 exists such that

|yi(t)| ≤ ε, t ∈ J1, i ∈ N4 . (15)

Let ε1, δ1 and J2 = [τ, τ + δ1] be such that 0 < ε1 ≤ ε̄, 0 < δ1 ≤ δ

ε1K < 1, ε1 max
0≤s≤ε
j∈N4

gj(s) ≤ ε ,

max
j∈N4

∫

J2

aj(t) dt ≤ ε1 .



















(16)
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Then by the use of (6), (15) we have for t ∈ J2 and i ∈ N4

|yi(t)| ≤
t

∫

τ

|fi(t, y1(t), . . . , y4(t))| dt ≤

≤
∫

J2

ai(t)dtgi(max
s∈J2

|yi+1(s)|) .

From this, by the use of (16) we get

max
s∈J2

|yi(s)| ≤ ε1gi(max
s∈J2

|yi+1(s)|) , i ∈ N4 . (17)

Denote ν = max
s∈J2

|y1(s)|. As y is not trivial in J2 and gi(0) = 0, it follows

from (17) that ν > 0 must be valid.
Further, according to (7), (16), and (17) we have

ν ≤ ε1g1(ε1g2(ε1g3(ε1g4(ν)))) ≤ ε1g1(ε̄g2(ε̄g3(ε̄g4(ν)))) 5

5 ε1Kν < ν .

The contradiction proves the theorem.

Proof of Theorem 3. (i) The statement is a consequence of Theorem 2
and (5).

(ii) Let τ ∈ J be a Z-point such that no Z-point exists in some right
neighborhood J1 of τ .

Then according to Theorem 1, (ii) there exists a right neighborhood J2 of
τ , J2 ⊂ J1 such that y is either of Type I(−∞, s) or of Type II(−∞, s), s ∈
{Z,∞} in J2. We prove by an indirect method that Type II is impossible.
Thus, suppose that y is of Type II (−∞, s) in J . Let α > τ , α ∈ J2.

Put

F = Ay4y1 + By2y3 + Cy2
2 + Dy1y3 + Ey1y2 + Gy2

1 , (18)

where

A(t) = −
t

∫

τ

1
a3(s)

α
∫

s

E(v)
a2(v)

dv ds , B(t) = −a3(t)
a1(t)

A(t) ,

C(t) = −a2(t)
a1(t)

α
∫

t

E(v)
a2(v)

dv − a2(t)
2

(a3(t)
a1(t)

)′
×

×
t

∫

τ

1
a3(s)

α
∫

s

E(v)
a2(v)

dv ds ,
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D(t) =

α
∫

t

E(v)
a2(v)

dv ; E(t) = (v − τ + σ)
1
2 ; G(t) = − a1(t)

4E(t)
.

The number σ > 0 is chosen in a manner such that

G′(t) =
−a′1(t)
4E(t)

+
a1(t)
F (t)3

≥ 0 ,

C ′(t) +
E(t)
a1(t)

= 2
E(t)
a1(t)

+
[a′2(t)
a1(t)

+
a′1(t)a2(t)

2a3(t)
− a2(t)

a1(t)

(a3(t)
a1(t)

)′]
×

×
α

∫

t

E(s)
a2(s)

ds− 1
2

(

a2(t)
(a3(t)

a1(t)

)′)′
t

∫

τ

1
a3(s)

t
∫

s

E(v)
a2(v)

dv ds ≥ 0 ,

(19)

t ∈ J3, holds, where J3, J3 = [τ, t̄], τ < t̄ ≤ α, is a suitable interval.
From this

F ′ = Ay′4y1 +
B
a2

y2
3 + (C ′ +

E
a1

)y2
2 + G′y2

1

and according to (4), (5), (19) and yi(τ) = 0, i ∈ N4, we have

F ′(t) ≥ 0, F (t) ≥ 0 on J3 . (20)

Further, let β, β ∈ (τ, t̄), be an arbitrary zero of y2. Then according to the
definition of Type II and (18) we have

A(t) < 0, D(t) > 0, G(t) < 0 on (τ, t̄) ,

y4(β)y1(β) > 0, y1(β)y3(β) < 0 .

Thus F (β) < 0 and the contradiction to (20) proves that y is of Type I
(−∞, s) in J2.

Let τ ∈ J be a Z-point such that no Z-point exists in some left neigh-
borhood of τ . Then we can prove similarly that y is of Type II (s,∞),
s ∈ {Z,−∞}, in some left neighborhood of τ . Also, the transformation of
the independent variable can be used for x = τ − t.

The above-mentioned results and Theorem 1, (i) show that there exists at
most one maximal interval of Z-points and the statement is a consequence
of Theorem 1, (i).

(iii) The intervals mentioned in the definition of Property W may occur
only in Type V. Thus the statement follows from the case (ii).

Proof of Remark 4. This can be done similarly to that of Theorem 3, (iii).
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