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ON OPTIMAL STOPPING OF INHOMOGENEOUS
STANDARD MARKOV PROCESSES

B. DOCHVIRI

Abstract. The connection between the optimal stopping problems
for inhomogeneous standard Markov process and the corresponding
homogeneous Markov process constructed in the extended state space
is established. An excessive characterization of the value-function
and the limit procedure for its construction in the problem of optimal
stopping of an inhomogeneous standard Markov process is given. The
form of ε-optimal (optimal) stopping times is also found.

1. Introduction and Statement of the Problem

General questions of the theory of optimal stopping of homogeneous
standard Markov processes are set forth in the monograph [1]. In various
restrictions on the payoff function there are given an excessive characteriza-
tion of the value, the methods of its construction, and the form of ε-optimal
and optimal stopping times.

In the present work the questions of optimal stopping theory for inhomo-
geneous (with infinite lifetime) standard Markov processes are studied. By
means of extension of the state space and the space of elementary events it is
possible to reduce the problems of optimal stopping for the inhomogeneous
case to the corresponding problems for homogeneous standard Markov pro-
cesses from which the excessive characterization of the value-function, the
method of its construction, and the form of ε-optimal (optimal) stopping
times for the initial problem are found.

Note that the idea of reducing the inhomogeneous Markov process to the
homogeneous one is wellknown. However, it is nontrivial to construct the
appropriate homogeneous Markov process in the extended state space, to
show the measurability of transition probabilities, and to prove the coinci-
dence of the corresponding value-functions.
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It should be noted that using the method of extension of state space in
the paper [2], the form of ε-optimal stopping times has been established for
the case of optimal stopping of homogeneous Markov processes on bounded
time interval.

Consider now the inhomogeneous (with infinite lifetime) standard Markov
process

X =
(

Ω,Ms,Ms
t , Xt, Ps,x

)

, 0 ≤ s ≤ t < ∞,

in the state space (S,B), i.e., it is assumed that:
(1) S is a locally compact Hausdorff space with a countable base, B is

the σ-algebra of Borel sets of the space;
(2) for every s ≥ 0, x ∈ S, Ps,x is a probability measure on the σ-algebra

Ms; Ms
t , t ≥ s, is the increasing family of sub-σ-algebras of the σ-algebra

Ms, where

Ms1 ⊇Ms2 , Ms
t ⊆Mu

v , for s1 ≤ s2, u ≤ s ≤ t ≤ v,

it is assumed as well that

Ms = Ms, Ms
t = Ms

t = Ms
t+, 0 ≤ s ≤ t < ∞,

where Ms is a completion of Ms with respect to the family of measures
{Pu,x, u ≤ s, x ∈ S}, Ms

t is the completion of Ms
t in Ms with respect to

the same family of measures ([3], Ch.I, Sect. 5);
(3) the paths of the process X = (Xt(ω)), t ≥ 0, are right continuous on

the time interval [0,∞);
(4) for each t ≥ 0 the random variables Xt(ω) (with values in (S,B)) are

Ms
t -measurable, t ≥ s, where it is supposed that

Ps,x
(

ω : Xs(ω) = x
)

= 1

and the function Ps,x(Xs+h ∈ B) is measurable in (s, x) for the fixed h ≥ 0,
B ∈ B (with respect to B[0,∞)⊗ B);

(5) the process X is strong Markov: for every (Ms
t , t ≥ s)-stopping time

τ (i.e., {ω : τ(ω) ≤ t} ∈ Ms
t , t ≥ s) we should have

Ps,x
(

Xτ+h ∈ B|Ms
τ

)

= P
(

τ,Xτ , τ + h,B
)

({τ < ∞}, Ps,x-a.s.),

where
P

(

s, x, s + h,B
)

≡ Ps,x
(

Xs+h ∈ B
)

;

(6) the process X is quasi-left-continuous: for every nondecreasing se-
quence of (Ms

t , t ≥ s)-stopping times τn ↑ τ should be

Xτn → Xτ ({τ < ∞}, Ps,x-a.s.).

Let g(t, x) be the Borel measurable function (i.e., measurable with respect
to the product σ-algebra B′ = B[0,∞)⊗ B) which is defined on [0,∞)× S
and takes its values in (−∞,+∞].
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Assume now the following integrability condition of the random process
g(t, Xt(ω)), t ≥ 0:

Es,x sup
t≥s

g−
(

t,Xt
)

< ∞, s ≥ 0, x ∈ S. (1)

The problem of optimal stopping of the process

X =
(

Ω,Ms,Ms
t , Xt, Ps,x

)

, 0 ≤ s ≤ t < ∞,

with the payoff g(t, x) is stated as follows: the value-function v(s, x) is
introduced as

v(s, x) = sup
τ∈Ms

Es,xg
(

τ,Xτ
)

, (2)

where Ms is the class of all finite (Ps,x-a.s.) (Ms
t , t ≥ s)-stopping times

and it is required to find the stopping time τε (for each ε ≥ 0) for which

Es,xg
(

τε, Xτε

)

≥ v(s, x)− ε

for any x ∈ S.
Such a stopping time is called ε-optimal, and in the case of ε = 0 it is

called simply optimal stopping time.
To construct ε-optimal (optimal) stopping times it is needed to charac-

terize the value v(s, x) and for this purpose the following notion of excessive
function turns out to be fundamental.

The function f(t, x) given on [0,∞)×S and taking its values in (−∞, +∞]
such that it is measurable with respect to the universal completion B′∗ of
the σ-algebra B′ = B[0,∞)⊗ B, is called excessive (relative to X) if

1) Es,xf−
(

t,Xt
)

< ∞, 0 ≤ s ≤ t < ∞, x ∈ S,

2) Es,xf
(

t,Xt
)

≤ f(s, x), t ≥ s, x ∈ S, (3)

3) Es,xf
(

t, Xt
)

→ f(s, x), if t ↓ s, x ∈ S.

2. Construction of the Homogeneous Standard Markov
Process in the Extended State Space

Let us introduce now the new space of elementary events Ω′ = [0,∞)×Ω
with elements ω′ = (s, ω), the new state space (the extended state space)
S′ = [0,∞) × S with the σ-algebra B′ = B[0,∞) ⊗ B, the new random
process X ′ with values in (S′,B′)

X ′
t(ω

′) = X ′
t(s, ω) =

(

s + t, Xs+t(ω)
)

, s ≥ 0, t ≥ 0,

and the translation operators Θ′t:

Θ′t(s, ω) = (s + t, ω), s ≥ 0, t ≥ 0,
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where it is obvious that

X ′
u

(

Θ′t(ω
′)

)

= X ′
u+t(ω

′), u ≥ 0, t ≥ 0.

Introduce in the space Ω′ the σ-algebra:

N0 = σ
(

X ′
u, u ≥ 0

)

, N0
t = σ

(

X ′
u, 0 ≤ u ≤ t

)

and on the σ-algebra N0 introduce the probability measures

P ′x′(A) = P ′(s,x)(A) ≡ Ps,x(As),

where A ∈ N0, and As is the section of A at the point s:

As =
{

ω : (s, x) ∈ A
}

,

where it is easy to see that As ∈ Fs ≡ σ(Xu, u = s) and if a ∈ N0
t , then

As ∈ Fs
s+t ≡ σ(Xu, s ≤ u ≤ s + t).

Consider the function

P ′
(

h, x′, B′) ≡ P ′x′
(

X ′
h ∈ B′).

We have to verify that this function is measurable in x′ for fixed h ≥ 0. For
the rectangles B′ = Γ×B which generate the σ-algebra B′ we have

P ′
(

h, x′, B′) = Ps,x
(

ω : (s + h, Xs+h(ω)) ∈ Γ×B
)

=

= I(s+h∈Γ)Ps,x
(

Xs+h ∈ B
)

;

therefore for the rectangles the function P ′(h, x′, B′) is measurable in x′.
Consider now the class of all sets B′, B′ ∈ B′ for which the function
P ′x′(X

′
h ∈ B′) is B′-measurable in x′. It is easy to verify that this class

of sets satisfies all the requirements of the monotone class theorem; there-
fore it coincides with the σ-algebra B′.

Thus the function P ′(h, x′, B′) is measurable in x′, and hence we can
introduce the measures P ′µ′ on the σ-algebra N0 for every finite measure
µ′ on (S′,B′) by averaging P ′x′ with respect to µ′ [3]. Let us perform the
completion of σ-algebra N0 with respect to the family of all measures P ′µ′ ,
denote this completion by N ′ and then perform the completion of each σ-
algebra N0

t in N ′ with respect to the same family of measures denoting
them by N ′

t .
The following key result (in a somewhat different form) was proved in

the paper [2].

Theorem 1. The random process

X =
(

Ω′, N ′, N ′
t , X

′
t, Θ

′
t, P

′
x′

)

, t ≥ 0,

is a homogeneous standard Markov process in the space (S′,B′).
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Proof. The main step in the proof is to verify that the process (Ω′, N0, N0
t+,

X ′
t, Θ

′
t, P

′
x′), t ≥ 0, is strong Markov, i.e., we have to show that

E′
x′

[

f ′(X ′
τ ′+h) · I(τ ′<∞)

]

= E′
x′

[

M ′
X′

τ′
f ′(X ′

h)I(τ ′<∞)
]

, (4)

where f ′(x′) is an arbitrary bounded B′-measurable function and τ ′ is an
arbitrary N0

t+-stopping time. Using again the monotone class theorem, it
is clear that this relation suffices to be proved for the indicator functions

f ′(x′) = I(s∈Γ) · I(x∈B).

Thus it is needed to check that

Es,x
[

I(s+τ ′(s,ω)+h∈Γ) · I(Xs+τ′(s,ω)+h∈B) · · · I(τ ′(s,ω)<∞)
]

=

= Es,x
[

I(s+τ ′(s,ω)+h∈Γ)Pu,y(Xu+h ∈ B)
∣

∣

∣u=s+τ ′(s,ω)
y=Xs+τ′(s,ω)

· I(τ ′(s,x)<∞)
]

.

For this purpose we shall use the following

Lemma 1. If τ ′(ω′) is an N0
t+-stopping time, then τ(ω) = s + τ ′(s, ω)

is a (Fs
t+, t ≥ s)-stopping time, where Fs

t = σ(Xu, s ≤ u ≤ t), t ≥ s.

Proof. Indeed, we have
(

ω : τ(ω) < t
)

=
(

ω : τ ′(s, ω) < t− s
)

=

=
(

ω′ : τ ′(ω′) < t− s
)

s,

but (ω′ : τ ′(ω′) < t− s) ∈ N0
t−s; therefore the section (ω′ : τ ′(ω′) < t− s)s

belongs to Fs
t . Thus τ(ω) is a (Fs

t+, t ≥ s)-stopping time.

It follows from this Lemma that since Fs
t+ ⊆ Ms

t+ = Ms
t , the variable

τ(ω) = s + τ ′(s, ω) is a (Ms
t , t ≥ s)-stopping time. Hence the desired

relation to be proved admits the following form:

Es,x
[

I(τ+h∈Γ) · I(Xτ+h∈B) × I(τ<∞)
]

=

= Es,x
[

I(τ+h∈Γ)Pu,y(Xu+h ∈ B)
∣

∣

∣ u=τ
y=Xτ

· I(τ<∞)
]

,

which obviously is a consequence of the strong Markov property of the
process X.

We know from Proposition 7.3, Ch. I in [3] that the strong Markov pro-
perty (4) of the process X ′ remains true for arbitrary N ′

t , t ≥ 0-stopping
times τ ′ and from Proposition 8.12, Ch. I in [3] we get that N ′

t = N ′
t+.

Quasi-left-continuity of the process X ′ now easily follows from the same
property of X with the help of Lemma 1. Theorem 1 is proved.
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3. The Optimal Stopping Problem for Processes X and X ′ and
the Connection Between Them

Let f(x′) = f(s, x) be an arbitrary Borel measurable function (i.e., B′-
measurable) which is given on S′ and takes its values in (−∞, +∞]. Con-
sider the following sets:

A =
{

ω′ : lim
t↓0

f(X ′
t) = f(X ′

0)
}

,

B =
{

ω′ : the path f(X ′
t(ω

′)) is right continuous on [0,∞)
}

.

Obviously, sections As and Bs are of the following form:

As =
{

ω : lim
t↓s

f(t,Xt(ω)) = f(s,Xs(ω))
}

,

Bs =
{

ω : the path f(t,Xt(ω)) is right continuous on [s,∞)
}

.

Lemma 2. The sets A and B belong to N0∗ (N0∗ is the universal com-
pletion of N0) and sections As and Bs belong to Fs∗ (Fs∗ is the universal
completion of Fs = σ(Xu, u ≥ s)).

Further we have

P ′s,x(A) = Ps,x(As), P ′s,x(B) = Ps,x(Bs). (5)

Proof. The set A can be written as follows:

A =
{

ω′ : lim
k→∞

sup
0<t< 1

k

f(X ′
t(ω

′)) = lim
k→∞

inf
0<t< 1

k

f(X ′
t(ω

′)) = f(X ′
0(ω

′))
}

.

Since
{

ω′ : sup
0<t< 1

k

f(X ′
t(ω

′)) > a
}

= pr
Ω′

{

(t, ω′) : 0 < t <
1
k

, f(X ′
t(ω

′)) > a
}

,

{

ω′ : inf
0<t< 1

k

f(X ′
t(ω

′)) < a
}

= pr
Ω′

{

(t, ω′) : 0 < t <
1
k

, f(X ′
t(ω

′)) < a
}

,

we get from Theorem 13, Ch. III in [4] that the latter sets are N0-analytic
and hence they belong to the universal completion of N0. Thus the set
A itself belongs to N0∗. As for the set B, we get from Theorem 34, Ch.
IV in [4] that this set is the completion of the N0-analytic set, hence B ∈
N0∗. The same reasoning shows that As and Bs belong to the universal
completion Fs∗ of the σ-algebra Fs. For the measure P ′s,x and for the sets
A and B belonging to the universal completion of N0 there obviously exist
the sets A1, A2, B1, B2 belonging to N0 such that

A1 ⊆ A ⊆ A2, B1 ⊆ B ⊆ B2,

P ′s,x(A1) = P ′s,x(A) = P ′s,x(A2),

P ′s,x(B1) = P ′s,x(B) = P ′s,x(B2).
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But by the definition of the measure P ′s,x we have

P ′s,x(A1) = P ′s,x(A1
s), P ′s,x(A2) = Ps,x(A2

s),

P ′s,x(B1) = P ′s,x(B1
s ), P ′s,x(B2) = Ps,x(B2

s ).

From these relations and the inclusions A1
s ⊆ As ⊆ A2

s and B1 ⊆ B ⊆ B2

it easily follows that (5) is true.

Now we return to the optimal stopping problem of the process X with
the payoff function g(t, x) satisfying the integrability condition (1)

Ms,x sup
t≥s

g−
(

t,Xt
)

< ∞, s ≥ 0, x ∈ S.

We get from Lemma 2 that the set

As =
{

ω : lim
t↓s

g(t,Xt(ω)) = g(s,Xs(ω))
}

belongs to the universal completion Fs∗ of the σ-algebra Fs, hence it has
the probability measure

Ps,x
{

ω : lim
t↓s

g(t,Xt) = g(s,Xs)
}

= Ps,x
{

ω : lim
t↓s

g(t,Xt) = g(s, x)
}

.

The second condition we need from the random process g(t,Xt), t ≥ 0,
consists in the requirement that these probabilities should be equal to 1

Ps,x
{

ω : lim
t↓s

g(t,Xt) = g(s, x)
}

= 1, s ≥ 0, x ∈ S. (6)

Simultaneously with the problem of optimal stopping of the process X
let us consider the problem of optimal stopping of the process

X ′ =
(

Ω′, N ′, N ′
t , X

′
t, Θ

′
t, P

′
x′

)

, t ≥ 0

with the same payoff g(x′) = g(s, x) (x′ = (s, x)) satisfying the conditions

E′
x′ sup

t≥0
g−

(

X ′
t

)

< ∞, x′ ∈ S′, (7)

P ′x′
{

ω′ : lim
t↓0

g(X ′
t) = g(x′)

}

= 1, x′ ∈ S′, (8)

and with the value v′(x′) defined by

v′(x′) = sup
τ ′∈M′

M ′
x′g

(

X ′
τ ′

)

, (9)

where M′ is the class of all finite (P ′x′-a.s.) (N ′
t , t ≥ 0)-stopping times.

Notice that condition (7) is exactly that of (1), and the same is true for
conditions (8) and (6) by virtue of Lemma 2.
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Observe that the condition (8) shows that the function g(x′) is finely
continuous (relative to X ′) but, as it is well known, the paths g(X ′

t(ω
′)) are

then (P ′x′-a.s.) right continuous (Theorem 4.8, Ch. II in [3]), that is,

P ′s,x(B) = 1, x′ ∈ S′,

where

B =
{

ω′ : the path g(X ′
t(ω

′)) is right continuous on [0,∞)
}

.

Now again by Lemma 2 we obtain

Ps,x
{

ω : the path g(t,Xt(ω)) is right

continuous on [s,∞)
}

= 1, s ≥ 0, x ∈ S. (10)

Thus we have obtained an interesting fact that condition (6) and condi-
tion (10) are equivalent.

Our next step consists in establishing the connection between the value-
functions v(s, x) and v′(s, x).

Lemma 3. The values of the initial optimal stopping problem (9) coin-
cide

v(s, x) = v′(s, x), s ≥ 0, x ∈ S. (11)

Proof. Consider first the (N ′
t , t ≥ 0)-stopping time τ ′. By Proposition 7.3,

Ch. I in [3] for τ ′ and fixed x′ = (s, x) there exists (N0
t+, t ≥ 0)-stopping

time τ̃ ′ such that P ′x′(τ
′ = τ̃ ′) = 1. We have

E′
x′g

(

X ′
τ̃ ′

)

= Es,xg
(

s + τ̃ ′(s, ω), Xs+τ̃ ′(s,ω)

)

=

= Es,xg
(

τ(ω), Xτ(ω)
)

,

where s + τ̃ ′(s, ω) ≡ τ(ω) is the (Ms
t , t ≥ s)-stopping time by Lemma 1.

Whence it is obvious that

v′(s, x) ≤ v(s, x).

It remains to establish the opposite inequality. Denote by Mn
s the class of

all (Ms
t , t ≥ s)-stopping times taking its values from the finite set

s, s + 2−n, . . . , s + k · 2−n, . . . , s + n.

Obviously,
Mn

s ⊆ Mn+1
s , n = 1, 2, . . . .

For every τ ∈ Ms define the sequence τn of stopping times

τn =

{

s + k2−n, if s + (k − 1)2−n ≤ τ < s + k2−n,
s + n, if τ ≥ s + n.
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It is clear that τn ∈ Mn
s and starting from some n(ω) the sequence τn(ω)

decreases to τ(ω). Using condition (10) and the right continuity of paths
g(t,Xt(ω)), t ≥ s (Ps,x-a.s.), we can write

g(τ, Xτ
)

= lim
n→∞

g
(

τn, Xτn

)

(Ps,x-a.s.).

Hence by Fatou’s lemma we get

Es,xg
(

τ, Xτ
)

≤ lim
n

Es,xg
(

τn, Xτn

)

.

Consequently

v(s, x) = sup
τ∈∪nMn

s

Es,xg
(

τ,Xτ
)

= lim
n→∞

sup
τ∈Mn

s

Es,xg
(

τ, Xτ
)

.

Consider separately the expression

sup
τ∈Mn

s

Es,xg
(

τ, Xτ
)

which represents the value in the problem of optimal stopping of the se-
quence

{

g(s + k2−n, Xs+k2−n),Ms
s+k2−n

}

, k = 0, 1, . . . , n2−n.

It is wellknown that for this problem there always exists an optimal stopping
time which has the following form:

σn = min
{

s + k2−n : γn
k = g(s + k2−n, Xs+k2−n

}

,

where the sequence γn
k is constructed recursively:

γn
k = max

{

g(s + k2−n, Xs+k2−n), Ms,x(γn
k+1|Ms+k2−n)

}

.

It easily follows from these recursion relations that γn
k is a Borel function

of Xs+k2−n . Therefore σn has the following form:

σn = min
{

s + k2−n : Xs+k2−n ∈ Bn
k

}

,

where the sets Bn
k belong to the σ-algebra B (of course, Bn

n2−n = S).
Thus we get

v(s, x) = lim
n→∞

↑ Es,xg
(

σn, Xσn

)

.

Define now the corresponding (N0
t , t ≥ 0)-stopping times

σ′n = min
{

k2−n : X ′
k2−n ∈ [0,∞)×Bn

k

}

.

We have

E′
s,xg

(

X ′
σ′n

)

= Es,xg
(

X ′
σ′n(s,ω)(s, ω)

)

=

= Es,xg
(

s + σ′n(s, ω), Xs+σ′n(s,ω)(ω)
)

= Es,xg
(

σn, Xσn

)
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as s + σ′n(s, ω) = σn(ω). Therefore

Es,xg
(

σn, Xσn

)

= E′
s,xg

(

X ′
σ′n

)

≤ v′(s, x).

Thus v(s, x) ≤ v′(s, x), and finally v(s, x) = v′(s, x).

Our next purpose is the excessive characterization of the cost v(s, x). Let
us note (as can be easily seen) that our definition of the excessive function
(relative to X) coincides exactly with the usual definition of the excessive
function (relative to X ′). Therefore we can directly use Theorem 1, Ch. III
in [1] and get the following result.

Theorem 2. Suppose that conditions (1) and (6) are satisfied. Then the
value v(s, x) is the least excessive majorant of the function g(s, x). The
value v(s, x) is the Borel measurable function, which can be found by the
following limit procedure:

v(s, x) = lim
n→∞

lim
N→∞

QN
n g(s, x), (12)

where
Qng(s, x) = max

{

g(s, x), Es,xg(s + 2−n, Xs+2−n)
}

and QN
n is the N th power of the operator Qn.

Proof. The assertion is the consequence of the coincidence of the values
v(s, x) and v′(s, x) and of Lemma 3, Ch. III in [3] which states that

v′(x′) = lim
n→∞

lim
N→∞

QN
n g(x′),

where
Qng(x′) = max

{

g(x′), E′
x′g(X ′

2−n)
}

.

Note also that E′
x′g(X ′

2−n) is B′-measurable in x′, hence the functions
Qng(x′), QN

n g(x′) and the function v′(x′), being the limit of these functions,
are also B′-measurable.

Thus the value v′(x′) is the Borel measurable excessive function (relative
to X ′) which obviously satisfies the condition

E′
x′ sup

t≥0
v−

(

X ′
t

)

< ∞, x′ ∈ S′.

Then it is well-known (Theorem 2.12, Ch. II in [3]) that the paths v(X ′
t(ω

′))
are right continuous with the left-hand limits on [0,∞) (P ′x′ -a.s.). Using
again Lemma 2 we obtain

Ps,x
{

ω : the path v
(

t,Xt(ω)
)

is right

continuous on [s,∞)
}

= 1, s ≥ 0, x ∈ S. (13)

To prove the main result of the present work we can now apply Theorem 3,
Ch. III in [1].
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Theorem 3. Let the payoff g(t, x) satisfy (relative to X) the following
conditions:

(1) Ms,x supt≥s

∣

∣g(t,Xt)
∣

∣ < ∞, s ≥ 0, x ∈ S;
(2) Ps,x

{

ω : limt↓s g(t, Xt(ω)) = g(s, x) = 1
}

, s ≥ 0, x ∈ S.
Then
(i) for every ε > 0 the stopping times

τε = inf
{

t ≥ s : v(t,Xt) ≤ g(t,Xt) + ε
}

(14)

are ε-optimal;
(ii) if the function g(t, x) is upper semi-continuous, that is,

g(s, x) ≥ lim
t→s
y→x

g(t, y)

and the stopping time

τ0(ω) = inf
{

t ≥ s : v(t, Xt) = g(t,Xt)
}

(15)

is finite (Ps,x-a.s.), then τ0(ω) is the optimal stopping time.

Proof. From Theorem 3, Ch. III in [1] we know that for every ε > 0 the
stopping time

τ ′ε = inf
{

t : v(X ′
t) ≤ g(X ′

t) + ε
}

is ε-optimal:

E′
x′g

(

X ′
τ ′ε

)

≥ v(x′)− ε, x′ ∈ S′,

that is,

Es,xg(s + τ ′ve(s, ω), Xs+τ ′ε(s,ω)(ω)
)

≥ v(s, x)− ε.

But it is obvious that s + τ ′ε(s, ω) = τε(ω), hence

Es,xg
(

τε, Xτε
)

≥ v(s, x)− ε.

Assume now the upper semi-continuity of the function g(x′). Then from
the same theorem we get again that the stopping time

τ ′0 = inf{t ≥ 0 : v(X ′
t) = g(x′t)

}

is optimal:

E′
x′g

(

X ′
τ ′0

)

= v(x′).

From this, similarly to the previous reasoning, we get the optimality of
the stopping time τ0(ω).
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