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ON A PROBLEM OF LITTLEWOOD

M. KHAZARADZE

Abstract. The theorem on the tending to zero of coefficients of a
trigonometric series is proved when the L1-norms of partial sums of
this series are bounded. It is shown that the analog of Helson’s theo-
rem does not hold for orthogonal series with respect to the bounded
orthonormal system. Two facts are given that are similar to Weis’ the-
orem on the existence of a trigonometric series which is not a Fourier
series and whose L1-norms of partial sums are bounded.

Let Sn(x), n = 1, 2, . . . , denote the partial sums of a trigonometric series

a0

2
+

∞
∑

k=1

ak cos kx + bk sin kx. (1)

It is well known (see [1,Ch.4]) that if p > 1 and

2π
∫

0

|Sn(x)|pdx = O(1), n = 1, 2, . . . , (2)

then (1) is a Fourier series.
Littlewood posed the question whether (1) is a Fourier series if

2π
∫

0

|Sn(x)|dx = O(1), n = 1, 2, . . . . (3)

Weis [4] constructed the example of the trigonometric series which is not
a Fourier series and for which property (3) is fulfilled.

Katznelson [6] strengthened this result by constructing the trigonometric
series which is not a Fourier series and for which

Sn(x) ≥ 0, n = 1, 2, . . . , x ∈ [0, 2π]. (4)
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Helson [5] showed that the coefficients of any series (1) with condition
(3) tend to zero.

It is also well known (see [1,Ch.7]) that if (3) holds for a trigonometric
series

∑+∞
k=−∞ ckeikx, then 1

n

∑n
k=1 |ck| = O

( 1
ln n

)

.
The following proposition (see [3,Ch.8]) is true: If the partial sums

Sn(x), n = 1, 2, . . . of any series
∑+∞

k=1 akϕk(x) with respect to a uniformly
bounded orthonormal system {ϕk(x)}∞k=1, x ∈ [0, 1], satisfy the condition
∫ 1
0 |Sn(x)|dx = O(1), then

1
n

n
∑

k=1

a2
k = O

( 1
ln n

)

. (5)

There naturally arise the questions:
1. Let {nk} be an arbitrary increasing sequence of natural numbers.

What can one say about the tendency to zero of coefficients of series (1) if
the condition

2π
∫

0

|Snk(x)|dx = O(1), n = 1, 2, . . . (6)

is fulfilled?
2. If the partial sums Sn(x), n = 1, 2, . . . , of any series

∑+∞
k=1 akϕk(x) in

terms of a uniformly bounded orthonormal system {ϕk(x)}∞k=1, x ∈ [0, 1],
satisfy the condition

∫ 1
0 |Sn(x)|dx = O(1), then does this imply that ak → 0?

3. The generalized problem of Littlewood: If there is a sequence of
positive numbers {εn} tending to zero as n →∞ such that

2π
∫

0

|Sn(x)|1+εndx = O(1), (7)

then does this always imply that (1) is a Fourier series?
4. What is a nontrivial condition which together with (3) enables one to

state that (1) is a Fourier series?
5. Given a function p(x) ≥ 0, x ∈ [0, 2π], vrai inf p(x) = 0, does there

always exist a trigonometric series (1) which is not a Fourier series such that

2π
∫

0

|Sn(x)|1+p(x)dx = O(1)? (8)

This paper gives the answers to the above-posed questions.
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§ 1. On the Tending to Zero of Coefficients of Trigonometric
Series

Theorem 1.1. Let {nk} be an increasing sequence of natural numbers.
Then:

(a) If nk+1 − nk = O(1), k → ∞, and the partial sums Snk(x) of series
(1) satisfy condition (6), then the coefficients of this series tend to zero.

(b) If nk+1 − nk 6= O(1), k → ∞, then there exists a trigonometric
series whose coefficients do not tend to zero but its partial sums Snk(x),
k = 1, 2, . . . , are positive (and the more so satisfy condition (6)).

Proof. (a) Condition (6) implies that (1) is a Fourier–Stieltjes series and
therefore its coefficients are bounded. By virtue of the condition nk+1−nk =
O(1), k = 1, 2, . . . , (3) also holds for series (1), which fact implies by Helson’s
theorem that the coefficients of (1) tend to zero.

(b) Let n1 < n2 < · · · < nk < · · · and nk+1 − nk 6= O(1), k = 1, 2, . . . .
We construct a new increasing sequence of natural numbers m1 < m2 <
· · · < mp < · · · in the following manner:

Let m1 = n1 and k1 = 1; if m1 < m2 < · · · < mp and k1 < k2 < · · · <
kp are already defined, then there exists kp+1 > kp such that nkp+1+1 −
nkp+1 > 4(m1 + m2 + · · · + mp) so that it can be assumed that mp+1 =
[nkp+1+1+nkp+1

2

]

, etc.
Since by the definition of the sequence {mp} we have mp+1 > 2(m1+m2+

· · ·+ mp) for any p, performing the formal multiplication in the
∏∞

p=1(1 +
cosmpx) we obtain the trigonometric series 1 +

∑∞
ν=1 γν cos νx. It will be

shown that for this series the conditions of the theorem are fulfilled. The fact
that the coefficients of this series do not tend to zero is obvious. Further,
for any nk there exists p such that

nkp < mp < nkp+1 ≤ nk ≤ nkp+1 < mp+1 < nkp+1+1

and by the definition of {mp} one can easily verify that

m1 + m2 + · · ·+ mp ≤ nk < mp+1 −mp −mp−1 − · · · −m1.

Therefore

Snk(x) = Sm1+m2+···+mp(x) =
p

∏

j=1

(1 + cos mjx) ≥ 0.

Remark. The following statement is valid: If {nk} is an arbitrary increas-
ing sequence of natural numbers and (6) holds for series (1), then ank → 0,
bnk → 0 as k → ∞. This is proved exactly in the same way as Helson’s
theorem (see [5]).
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Theorem 1.2. There exists an orthogonal series

∞
∑

k=1

akϕk(x)

with respect to a uniformly bounded orthonormal system {ϕk(x)}∞k=1, x ∈
[0, 1], for which

1
∫

0

|Sn(x)|dx = O(1),

but the coefficients ak do not tend to zero.

Proof. It will do to construct on [0, 2π] an orthogonal series

∞
∑

k=1

akϕk(x)

such that the conditions

2π
∫

0

|Sn(x)|dx = O(1),

‖ϕk(x)‖L∞ ≤ M, k = 1, 2, . . . ,

‖ϕk(x)‖L2 ≥ a > 0, k = 1, 2, . . . ,

are fulfilled and the coefficients ak do not tend to zero.
It is well known (see [1,Ch.5]) that there is a constant C > 1 such that

for any natural N and x ∈ [0, 2π]

∣

∣

∣

1√
N

N
∑

1

ein ln neinx
∣

∣

∣ < C.

We define the trigonometric polynomial

PN (x) = Re
( 1

2C
√

N

N
∑

1

ein ln neinx
)

.

For any N and λ (λ is also natural) we have that conditions |PN (λx)| < 1
2 ,

x ∈ [0, 2π], ‖PN (λx)‖L2 =
√

π
2C , and the absolute value of any coefficient of

PN (λx) does not exceed 1√
N

. The first one of these properties also holds
for any partial sum of PN (λx).

Construct the increasing sequences of natural numbers N1 < N2 < · · · <
Nk < · · · and λ1 < λ2 < · · · < λk < · · · .
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Let N1 = 1, λ1 = 1. If N1 < N2 < · · · < Nk−1 and λ1 < λ2 < · · · < λk−1

are already defined, then λk is such that λk > 2(λ1N1 + λ2N2 + · · · +
λk−1Nk−1). Define Nk in a manner such that

1√
Nk

< 2−k−2
∥

∥

k−1
∏

j=1

(1− PNj (λjx))
∥

∥

−1
A , (9)

where ‖P (x)‖A denotes the sum of absolute values of the coefficients of a
trigonometric polynomial P (x).

By virtue of the definition of {Nk} and {λk} the infinite product
∏∞

k=1(1−
PNk(λkx)) gives rise to the rigonometric series

1 +
∞
∑

ν=1

aν cos νx + bν sin νx. (10)

We shall show that the partial sums of this series are positive.
Clearly,

Sλ1N1+···+λkNk(x) =
k

∏

j=1

(1− PNj (λjx)) > 2−k.

If λ1N1 + · · ·+ λkNk < n < λ1N1 + · · ·+ λk+1Nk+1, then we have

Sn(x) = P (x) + Q(x), (11)

where P (x) is the polynomial obtained by multiplying
∏k

j=1(1−PNj (λjx))
by some partial sum of the polynomial 1− PNk+1(λk+1x). Therefore

P (x) > 2−k−1. (12)

Here Q(x) is the partial sum of the trigonometric polynomial which is ob-
tained by multiplying

∏k
j=1(1−PNj (λjx)) by some term of the polynomial

PNk+1(λk+1x) (i.e., by am cos mλk+1x + bm cos mλk+1x with some m and
the cofficients am and bm with absolute values not exceeding 1/

√

Nk+1).
By (9) we conclude that

|Q(x)| < 2k−2. (13)

The relations (11), (12) and (13) imply that Sn(x) > 0 x ∈ [0, 2π].
For any k, k = 1, 2, . . . , in series (10) all terms of the polynomial PNk(λkx)

lie on the segment from the number λ1N1 + · · ·+λk−1Nk−1 to λ1N1 + · · ·+
λkNk. On this segment we perform the permutation of the terms of (10) in
a manner such that the first term of the polynomial PNk(λkx) is followed
by its other terms, but we do not change the mutual arrangement of the
other terms. The polynomial PNk(λkx) will be treated as a term of the
new orthogonal series in terms of the new orthogonal system consisting of
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the trigonometric series terms and the polynomial PNk(λkx), k = 1, 2, . . . .
Now, taking into account the above-mentioned properties of PN (λx) and
using the fact that the partial sums of the initial series (10) are positive, it
is easy to show that the obtained orthogonal series satisfies the conditions
indicated at the beginning of the proof.

§ 2. Generalized Problem of Littlewood

Theorem 2.1. For any sequence {εn}n≥1, εn ≥ 0, εn → 0, there is a
trigonometric series (1) which is not a Fourier series but for which condition
(7) is fulfilled.

Proof. First, we shall prove the theorem when 1 ≥ εn > 0, n = 1, 2, . . . ,
and εn ↓ 0.

Consider the trigonometric series

∞
∏

k=1

(

1 +
1√

k + 1
cos nkx

)

= 1 +
∞
∑

ν=1

γν cos νx, (14)

where n1 < n2 < · · · < nk < · · · is some increasing sequence of natural
numbers for which

nk+1

nk
≥ q > 3, k = 1, 2, . . . .

Since
∑∞

k=1

( 1√
k+1

)2
= ∞, then this series is the zero-series (see [1,Ch.5])

and thus cannot be a Fourier series.
Our purpose is to choose numbers n1 < n2 < · · · < nk < · · · such that

(7) is fulfilled for series (14).
By the condition εn ↓ 0 there is n1 such that

(

1 +
1√
2

)εn1
< 2.

Next, we assume that n1, . . . , nk (k ≥ 1) are already chosen. We choose
nk+1 such that nk+1

nk
≥ 4 and

[(

1 +
1√
2

)

· · ·
(

1 +
1√

k + 1

)(

1 +
1√

k + 2

)

]εµk+1
< 2,

where µk+1 = nk+1 + nk + · · ·+ n1, and so on.
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For the partial sums Sµk(x), k = 1, 2, . . . , of series (14) we have

2π
∫

0

|Sµk(x)|1+εµk dx =

2π
∫

0

[(

1 +
1√
2

cos n1x
)

· · ·

· · ·
(

1 +
1√

k + 1
cosnkx

)]1+εµk
dx ≤

2π
∫

0

(

1 +
1√
2

cos n1x
)

· · ·

· · ·
(

1 +
1√

k + 1
cosnkx

)

dx
[(

1 +
1√
2

)

· · ·
(

1 +
1√

k + 1

)]εµk
< 4π.

Therefore

2π
∫

0

|Sµk(x)|1+εµk dx = O(1), k = 1, 2, . . . . (15)

Let us show that

2π
∫

0

|Sµk+1(x)− Sµk(x)|2dx < C, k = 1, 2, . . . , (16)

where the constant C does not depend on k. We have

2π
∫

0

|Sµk+1(x)− Sµk(x)|2dx = π
µk+1
∑

ν=µk+1

γ2
ν .

We can readily see that each nonzero coefficient γν , ν = µk + 1, µk +
2, . . . , µk+1, has the form

1
2p ·

1√
i1 + 1

· 1√
i2 + 1

· · · 1
√

ip + 1
· 1√

k + 2
, i1 < i2 < · · · < ip < k + 1,

and each product of this kind is encountered among the coefficients γν ,
ν = µk + 1, . . . , µk+1, 2p-times. Now we have

2π
∫

0

|Sµk+1(x)− Sµk(x)|2dx =

= π
( 1

k + 2
+

k
∑

i1=1

1
2

1
(i1 + 1)(k + 2)

+ · · ·+

+
∑

i1<i2<k+1

1
22

1
(i1 + 1)(i2 + 1)(k + 2)

+ · · ·+
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+
∑

i1<···<ik<k+1

1
2k

1
(i1 + 1) · · · (ik + 1)(k + 2)

)

<

< π
1

k + 2

(

1 +
(1

2
+

1
3

+ · · ·+ 1
k + 1

)

+

+
( 1

2 · 3
+

1
2 · 3

+
1

3 · 4
+ · · ·+ 1

k · (k + 1)

)

+

+ · · ·+ 1
2 · 3 · · · (k + 1)

)

=
π

k + 2

k+1
∏

i=2

(

1 +
1
i

)

=
π
2

.

Let n be any natural number. Then there is k such that µk ≤ n < µk+1.
Therefore

Sn(x) = Sµk(x) + (Sn(x)− Sµk(x)),

‖Sn(x)‖1+εn ≤ ‖Sµk(x)‖1+εn + ‖Sn(x)− Sµk(x))‖1+εn .

Since εn ↓ 0 and εn ≤ 1, by (15) and (16) we obtain

‖Sn(x)‖1+εn ≤ 2π‖Sµk(x)‖1+εµk
+ ‖Sn(x)− Sµk(x))‖2 · 2π ≤ 2πM,

where M does not depend on n. Therefore

2π
∫

0

|Sn(x)|1+εndx = O(1), n = 1, 2, . . . .

Let now {εn} be any sequence of nonnegative numbers tending to zero.
Then there is a sequence {ε′n}, monotonically converging to zero, such that
starting from he number N we have 1 ≥ ε′n > 0 and 0 ≤ εn < ε′n. Then, by
virtue of the facts proved above, for this sequence there is a trigonometric
series which is not a Fourier series but for whose partial sums the estimate

2π
∫

0

|Sn(x)|1+ε′ndx < K, n = 1, 2, . . . , (17)

where K does not depend on n, is fulfilled.
We shall show that estimate (17) (perhaps with another constant K)

remains valid for the same series and the sequence {εn}.
Let

M = max
{

2π
∫

0

|Sn(x)|1+εndx : n = 0, 1, . . . N − 1
}

. (18)
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If n ≥ N , then

2π
∫

0

|Sn(x)|1+εndx =
∫

{x∈[0,2π]:0≤|Sn(x)|≤1}

|Sn(x)|1+εndx +

+
∫

{x∈[0,2π]:|Sn(x)>1}

|Sn(x)|1+εndx <

< 2π +

2π
∫

0

|Sn(x)|1+ε′ndx < 2π + K. (19)

If K ′ = 2π + K + M , on account of (18) and (19) we obtain

2π
∫

0

|Sn(x)|1+εndx ≤ K ′, n = 1, 2, . . . .

Remark. Let Sn(x) denote partial sums of the trigonometric series con-
jugated with (1). Then the condition

∫ 2π
0 |Sn(x)|dx = O(1) together with

(3) enables us to state that series (1) is a Fourier series.
To prove the latter statement we have to show that the function

F (z) = F (reix) = P (r, x) + iQ(r, x),

where P (r, x) and Q(r, x) denote respectively the Abelian means of (1) and
of its conjugate series, belongs to the Hardy class H.

Now one can easily verify that (1) is a Fourier series of the real part of
the limiting value of F (reix) for r → 1.

Theorem 2.2. (I) If p(x) ≥ 0, x ∈ [0, 2π], and p(x) = 0, x ∈ (a, b) ⊂
[0; 2π], a < b, then there exists a trigonometric series (1) which is not a
Fourier series, but condition (8) holds for it.

(II) If condition (8) is fulfilled for the trigonometric series for p(x) = x,
then (1) is a Fourier series.

(Note that vrai inf p(x) = 0 for p(x) = x.)

Proof. (I) Let a < a′ < a′′ < b′′ < b′ < b. It is well known that if F (x) is
a continuous function of the bounded variation, the Fourier–Stieltjes series
S[dF ] is a Fourier series if and only if F (x) is absolutely continuous.

It is also well known (see [1,Ch.4]) that if series (1) satisfies condition
(3), then it is a Fourier–Stieltjes series of the continuous function F (x).

Clearly, if S[dF (x)] satisfies condition (3), then it also satisfies condition
(3) for any α. Therefore by Weis’ theorem there exists a function F (x)
which is continuous, is a function of the bounded variation, is singular on



130 M. KHAZARADZE

(a′′, b′′), and the Fourier–Stieltjes series of F (x)− S[dF ] satisfies condition
(3).

On [0, 2π] we define the function ρ(x) as follows: ρ(x) = 0, x ∈ [0, a′) ∪
(b′, 2π], ρ(x) = 1, x ∈ (a, b), and ρ(x) is linear on the intervals (a′, a′′) and
(b′′, b′).

Clearly ρ(x)F (x) is a continuous function of the bounded variation which
is singular on (a′′, b′′). Therefore S[dρF ] is not a Fourier series,

Sn(x, dρF ) =
1
π

2π
∫

0

sin
(

n + 1
2

)

t
2 sin t

2

dρ(x + t)F (x + t). (20)

Since ρ(x) = 0 for x ∈ [0, a′] ∪ [b′, 2π], there is M such that

|Sn(x, dρF )| < M, x ∈ [0, a] ∪ [b, 2π], n = 1, 2, . . . .

Then we have

a
∫

0

∣

∣Sn
(

x, d
1
M

ρF
)∣

∣

1+P (x)
dx +

2π
∫

b

∣

∣Sn
(

x, d
1
M

ρF
)∣

∣

1+P (x)
dx ≤ 2π, (21)

n = 1, 2, . . .

Let us show that S
[

d 1
M ρF

]

satisfies the conditions of Theorem (I). For this
by virtue of (21) it is sufficient to show that

b
∫

a

∣

∣Sn(x, dρF )
∣

∣dx = O(1), n = 1, 2, . . . . (22)

From (20) we have

Sn(x, dρF ) =
1
π

2π
∫

0

sin
(

n + 1
2

)

t
2 sin t

2

ρ(x + t)dF (x + t) +

+
1
π

2π
∫

0

sin
(

n + 1
2

)

t
2 sin t

2

F (x + t)dρ(x + t) =

=
1
π

2π
∫

0

sin
(

n + 1
2

)

t
2 sin t

2

(ρ(x + t)− ρ(x))dF (x + t) +

+
1
π

ρ(x)

2π
∫

0

sin
(

n + 1
2

)

t
2 sin t

2

dF (x + t) +
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1
π

2π
∫

0

sin
(

n + 1
2

)

t
2 sin t

2

F (x + t)ρ′t(x + t)dt =

= S(1)
n (x) + S(2)

n (x) + S(3)
n (x). (23)

By the definition of ρ(x), there is C such that |ρ(x + t) − ρ(x)| < Ct for
any x and t. Therefore there is a constant C1 such that

∣

∣S(1)
n (x)

∣

∣ < C1, x ∈ [0, 2π], n = 1, 2, . . . . (24)

By the definition of F (x) we have

2π
∫

0

∣

∣S(2)
n (x)

∣

∣dx = O(1), n = 1, 2, . . . . (25)

Since S(3)
n (x), n = 1, 2, . . . , are the partial sums of the Fourier series of

functions of the bounded variation, we obtain

2π
∫

0

∣

∣S(3)
n (x)

∣

∣dx = O(1), n = 1, 2, . . . . (26)

The relations (23)–(26) imply (22).
(II) If the condition

2π
∫

0

∣

∣Sn(x, )
∣

∣

1+x
dx = O(1), n = 1, 2, . . . . (27)

is fulfilled for series (1), then series (1) is a Fourier–Stieljes series of the
function F (x) which is continuous, is the function of the bounded variation,
and is defined as

F (x) = lim
j→∞

Fnj (x) = lim
j→∞

x
∫

0

Snj (t)dt,

for some sequence {nj} (see [1,Ch.4]).
Then, since for any a ∈ (0, 2π] we have p(x) = x ≥ a for x ∈ [a, 2π],

functions Fnj (x) j = 1, 2, . . . , on the segment [a, 2π] will be uniformly abso-
lutely continuous and therefore F (x) will be absolutely continuous on [a, 2π]
(see [1,Ch.4]).

Thus we make the following statement: F (x) is absolutely continuous
on [a, 2π] for any a ∈ (0, 2π); moreover, F (x) is a function of the bounded
variation and is continuous on [0, 2π]. Hence we conclude that F (x) is
absolutely continuous on [0, 2π].
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Remark. In proving part (I) of Theorem 2.2 the obtained trigonometric
series S

[

d 1
M ρF

]

satisfying the conditions of the theorem depends only on
the interval (a, b) and does not depend on the value of p(x) outside (a, b).
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