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ON PROJECTIVE METHODS OF APPROXIMATE
SOLUTION OF SINGULAR INTEGRAL EQUATIONS

A. JISHKARIANI∗ AND G. KHVEDELIDZE

Abstract. The estimate for the rate of convergence of approximate
projective methods with one iteration is established for one class of
singular integral equations. The Bubnov–Galerkin and collocation
methods are investigated.

Introduction

Let us consider an operator equation of second kind [1]

u− Tu = f, u ∈ E, f ∈ E, (1)

where E is a Banach space and T : E → E is a linear bounded operator.
Let the sequences of closed subspaces {En}, En ⊂ E, and of the cor-

responding projectors {Pn} be given so that D(Pn) ⊂ E, En ⊂ D(Pn),
Pn(D(Pn)) = En, TE ⊂ D(Pn), f ∈ D(Pn), n = 1, 2, . . . , where D(Pn)
denotes the domain of definition of Pn.

Applying the Galerkin method to equation (1), we obtain an approximate
equation [1]

un − PnTun = Pnf, un ∈ En. (2)

It is known [1] that if the operator I − T is continuously invertible, and
‖P (n)T‖ → 0 for n →∞, where P (n) ≡ I −Pn, then for sufficiently large n
the approximating equation (2) has a unique solution un, and the estimate

‖u− un‖ = O(‖P (n)u‖)

is valid.
Assume that we have found an approximate solution un of equation (2).
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Take one iteration (see [2])

ũn = Tun + f. (3)

The element ũn ∈ E, being the approximate solution of equation (1) by
the Galerkin method, satisfies the equation

ũn − TPnũn = f. (4)

From (1) and (4) we have

(I − TPn)(u− ũn) = TP (n)u.

If the operator I−T is continuously invertible, and ‖TP (n)‖ → 0 for n →
∞, then for sufficiently large n there exists the inverse bounded operator
(I − TPn)−1. Therefore

‖u− ũn‖ ≤ ‖(I − TPn)−1‖ · ‖TP (n)u‖, n ≥ n0. (5)

Since

‖TP (n)u‖ ≤ ‖TP (n)‖ ‖P (n)u‖,

the rate of convergence ‖u− ũn‖ compared to ‖u−un‖ can be increased by
means of a good estimate ‖TP (n)‖.

In the present paper we consider in the weighted space a singular integral
equation of the form

Su + Ku = f, (6)

where Su ≡ 1
π

∫ 1
−1

u(t)dt
t−x , −1 < x < 1, is a singular integral operator, and

Ku ≡ 1
π

∫ 1
−1 K(x, t)u(t)dt is an integral operator of the Fredholm type (see

[3], [4]).
For the singular integral equation (6) we may have three index values:

κ = −1, 0, 1.
Our aim is to derive, for (6), an estimate of the convergence rate of

the projective Bubnov–Galerkin and collocation methods with one iteration
when Chebyshev–Jacobi polynomials are taken as a coordinate system.

Note that the results described below are also valid with required modi-
fications for the singular integral equation of second kind

(a + bS + K)u = f,

where a and b are real numbers, a2 + b2 > 0.
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§ 1. The Bubnov–Galerkin Method with One Iteration

1.1. Index κ = 1. We take a weighted space L2,ρ[−1, 1], where the weight
ρ = ρ1 = (1 − x2)1/2. The scalar product [u, v] =

∫ 1
−1 ρ1uv dx. For the

index κ = 1 we have the additional condition

1
∫

−1

u(t)dt = p, (7)

where p is a given real number.
The operator S is bounded in L2,ρ (see [4]). We require of the kernel

K(x, t) that the operator K be completely continuous in L2,ρ. The ho-
mogeneous equation Su = 0 in the space L2,ρ has a nontrivial solution
u = (1− x2)−1/2.

In the space L2,ρ the following two systems of functions are orthonormal-
ized and complete:

(1) ϕk(x) ≡ (1− x2)−1/2
̂Tk(x), k = 0, 1, . . . ,

̂T0 =
( 1

π

)1/2
T0, ̂Tk+1 =

( 2
π

)1/2
Tk+1, k = 0, 1, . . . ,

where Tk, k = 0, 1, . . . , are the Chebyshev polynomials of first kind, and

(2) ψk+1(x) ≡
(

2
π

)1/2
Uk(x), k = 0, 1, . . . ,

where Uk, k = 0, 1, . . . , are the Chebyshev polynomials of second kind.
Denote Φ ≡ u− pπ−1(1− x2)−1/2. Then problem (6)–(7) can be written

in the form (see [5])

SΦ + KΦ = f1, Φ ∈ L(2)
2,ρ, f1 ∈ L2,ρ, (8)

1
∫

−1

Φ(t)dt = 0, (9)

where f1 ≡ f − pπ−1K(1 − t2)−1/2, L2,ρ = L(1)
2,ρ ⊕ L(2)

2,ρ is the orthogonal

decomposition, L(1)
2,ρ is the linear span of the function ϕ0 = (1−x2)−1/2, and

L(2)
2,ρ is its orthogonal complement. In the sequel, under S we shall mean its

restriction on L(2)
2,ρ. Then S(L(2)

2,ρ) = L2,ρ and S−1(L2,ρ) = L(2)
2,ρ.

The relations

Sϕk = ψk, k = 1, 2, . . . , (10)
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(see [6]) are valid. An approximate solution of equation (8) is sought in the
form

Φn =
n

∑

k=1

akϕk.

Owing to (10), the algebraic system composed of the conditions

[SΦn + KΦn − f1, ψi] = 0, i = 1, 2, . . . , n,

yields

ai +
n

∑

k=1

ak[Kϕk, ψi] = [f1, ψi], i = 1, 2, . . . , n. (11)

It is known [5] that if there exists the inverse operator (I + KS−1)−1

mapping L2,ρ onto itself, then for sufficiently large n the algebraic system
(11) has a unique solution (a1, a2, . . . , an), and the sequence of approximate
solutions

un = Φn + pπ−1(1− x2)−1/2

converges to the exact solution u in the metric of the space L2,ρ. Similar
results are valid for κ = −1, 0.

With the help of the orthoprojector Pn which maps L2,ρ onto the linear
span of the functions ψ1, . . . , ψn we can rewrite the algebraic system (11)
as

wn + PnKS−1wn = Pnf1, wn ≡ SΦn =
n

∑

k=1

akψk. (12)

From the initial equation (8) we have

w + KS−1w = f1, w ∈ L2,ρ, f1 ∈ L2,ρ, w ≡ SΦ. (13)

Equation (12) is the Bubnov–Galerkin approximation for (13).
As in [2], let us introduce the iteration

w̃n = −KS−1wn + f1 = −KΦn + f1. (14)

where w̃n satisfies the equation

w̃n = −KS−1Pnw̃n + f1.

For n ≥ n0 we obtain

‖w − w̃n‖ ≤ C‖KS−1P (n)‖ · ‖P (n)w‖.
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Let ˜Φn ≡ S−1w̃n. To find ˜Φn, it is necessary to calculate the integral

S−1w̃n =
(1− t2)−1/2

π

1
∫

−1

(1− x2)1/2 w̃n(x)dx
t− x

.

We have

‖u− ũn‖=‖Φ− ˜Φn‖=‖S−1(w − w̃n)‖=‖w − w̃n‖≤

≤C‖KS−1P (n)‖ · ‖P (n)w‖,

where ũn = ˜Φn + pπ−1(1− x2)−1/2.

Theorem 1. If there exists the inverse operator (I + KS−1)−1 map-
ping L2,ρ onto itself, and the conditions w(n) ∈ LipM α, 0 < α ≤ 1, and
K(l)(x, t) ∈ LipM α1, 0 < α1 ≤ 1, ∀x ∈ [−1, 1], are fulfilled for the deriva-
tives, then the estimate

‖u− ũn‖ = O(n−(m+α)−(l+α1))

is valid.

Proof. We have

Pnw =
n

∑

k=1

[w, ψk]ψk.

‖P (n)w‖2 =

1
∫

−1

(1− x2)1/2(w − Pnw)2dx =

=

1
∫

−1

(1− x2)1/2(w −
n

∑

k=1

[w,ψk]ψk)2ds ≤

≤
1

∫

−1

(1− x2)1/2(w − Pn−1)2dx ≤ π
2
‖w − Pn−1‖2C ,

where Pn−1 is the polynomial of the best uniform approximation.
By Jackson’s theorem [7] we have

‖w − Pn−1‖C ≤ C(w)
(n− 1)m+α , n > 1,

with a constant C(w) depending on w and its derivatives, i.e., ‖P (n)w‖ =
O(n−(m+α)).
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Furthermore,

‖KS−1P (n)v‖2 = ‖KS−1
∞
∑

k=n+1

[v, ψk]ψk‖2 = ‖K
∞
∑

k=n+1

[v, ψk]ϕk‖2 =

=
1
π2

∥

∥

∥

∞
∑

k=n+1

[v, ψk]
(

K(x, t), ϕk(t)
)

∥

∥

∥

2
≤

≤ 1
π2

∥

∥

∥

{
∞
∑

k=n+1

[v, ψk]2
}1/2

×
{

∞
∑

k=n+1

(

K(x, t), ϕk(t)
)2

}1/2
‖2 ≤

≤ ‖v‖2

π2

1
∫

−1

(1− x2)1/2
(

∞
∑

k=n+1

(

K(x, t), ϕk(t)
)2

)

dx =

=
‖v‖2

π2

1
∫

−1

(1− x2)1/2
(

∞
∑

k=n+1

(

K(x, t), (1− t2)−1/2
̂Tk(t)

)2
)

dx =

=
‖v‖2

π2

1
∫

−1

(1− x2)1/2
∥

∥

∥

∞
∑

k=n+1

[

K(x, t), ̂Tk(t)
]

Lr,ρ−1
̂Tk(t)

∥

∥

∥

2

L2,ρ−1

dx,

∥

∥

∥

∞
∑

k=n+1

[

K(x, t), ̂Tk(t)
]

Lr,ρ−1
̂Tk(t)

∥

∥

∥

2

L2,ρ−1

=

=

1
∫

−1

(1− t2)1/2
(

∞
∑

k=n+1

[

K(x, t), ̂Tk(t)
]

L2,ρ−1
̂Tk(t)

)2
dt =

=

1
∫

−1

(1− t2)1/2
(

K(x, t)−
n

∑

k=0

[

K(x, t), ̂Tk(t)
]

L2,ρ−1
̂Tk(t)

)2
dt ≤

≤
1

∫

−1

(1− t2)1/2(K(x, t)− Pn(x, t)
)2

dt ≤ π
(

Et
n

(

K(x, t)
)

)2
,

where x is a parameter, Pn(x, t) is the polynomial of the best uniform ap-
proximation with respect to t, and Et

n(K(x, t)) the corresponding deviation
∣

∣K(x, t)− Pn(x, t)
∣

∣ ≤ Et
n

(

K(x, t)
)

, −1 < x, t < 1.

If K(l)
t (x, t) ∈ LipM1

α1, 0 < α1 ≤ 1 ∀x ∈ [−1, 1], and is continuous with
respect to x in [−1, 1], then (see [8, Ch.XIV, §4])

Et
n

(

K(x, t)
)

= O
(

n−(l+α1)
)

.
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Furthermore,

∥

∥KS−1P (n)v
∥

∥

2 ≤ ‖v‖2

π2

1
∫

−1

(1− x2)1/2π
(

Et
n(K(x, t))

)2
dx =

=
‖v‖2

π2 π
π
2

(

Et
n(K(x, t))

)2
.

Thus
∥

∥KS−1P (n)
∥

∥ = O
(

n−(l+α1)
)

.
Finally, we get

‖u− ũn‖ ≤ ‖KS−1P (n)w‖ ≤

≤ ‖KS−1P (n)‖ · ‖P (n)w‖ = O(n−(m+α)−(l+α1)).

For the approximate solution un we have

‖u− un‖ ≤ C‖P (n)w‖ = O(n−(m+α)),

while for one iteration ũn performed over un when l = m, α1 = α, we obtain
the estimate

‖u− ũn‖ = O(n−2(m+α)).

1.2. Index κ = −1. The operator S is bounded in the weighted space
L2,ρ[−1, 1], where ρ = ρ2 = (1− x2)−1/2 (see [4]). We require of the kernel
K(x, t) that the operator K be completely continuous in L2,ρ. The equation
Su = 0 in L2,ρ has the zero solution only, while the equation S∗u = 0 has
the nonzero solution u = 1.

If in the weighted space L2,ρ the equation Su + Ku = f has a solution
u, then [Ku− f, 1] = 0. This condition will be fulfilled if K(LL2,ρ) ⊥ 1 and
[f, 1] = 0, which can be achieved by specific transform [9].

In the space L2,ρ the following two systems of functions are complete and
orthonormal:

(1) ϕk+1(x) ≡
( 2

π

)1/2
Uk(x), k = 0, 1, . . . ,

where Uk, k = 0, 1, . . . are Chebyshev polynomials of second kind, and

(2) ψk+1(x) ≡ −
( 2

π

)

Tk+1(x), k = 0, 1, . . . ,
where Tk+1, k = 0, 1, . . . are Chebyshev polynomials of first kind.

Relations
Sϕk = ψk, k = 1, 2, . . .

(see [6]) are valid.
An approximate solution is again sought in the form

un =
n

∑

k=1

akϕk.
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The Bubnov–Galerkin method results in the algebraic system

ai +
n

∑

k=1

ak[Kϕk, ψi] = [f, ψi], i = 1, 2, . . . , n. (15)

Denote wn ≡ Sun =
∑n

k=1 akψk. Then using the orthoprojector Pn map-
ping L2,ρ onto the linear span of the functions ψ1, ψ2, . . . , ψn the algebraic
system (15) can be rewritten as

wn + PnKS−1wn = Pnf. (16)

Let the approximate solution wn be found.
Taking one iteration

w̃n = −KS−1wn + f = −Kun + f,

we find that ũn = S−1w̃n =
(1− t2)1/2

π
∫ 1
−1(1− x2)−1/2 w̃n(x)dx

t− x
.

Theorem 2. If there exists the inverse operator (I +KS−1)−1 mapping
L(2)

2,ρ onto itself, and the conditions w(m) ∈ LipM α, 0 < α ≤ 1, K(l)
t (x, t) ∈

LipM α1, 0 < α1 ≤ 1, ∀x ∈ [−1, 1], are fulfilled for the derivatives, then the
estimate

‖u− ũn‖ = O(n−(m+α)−(l+α1))

is valid.

This theorem as well as Theorem 3 which will be formulated in the next
subsection can be proved similarly to Theorem 1.

1.3. Index κ = 0. Here we may have two cases:
(1) α = − 1

2 , β = 1
2 and (2) α = 1

2 , β = − 1
2 .

Let us consider the first case. The second one is considered analogously.
The operator S is bounded in the weighted space L2,ρ[−1, 1] with the

weight ρ = ρ3 = (1− x)1/2(1 + x)−1/2 [4]. We require of the kernel K(x, t)
that the operator K be completely continuous in L2,ρ[−1, 1]. In the space
L2,ρ the equations Su = 0 and S∗u = 0 have only trivial solution u = 0,
S(L2,ρ) = L2,ρ, where S is the unitary operator.

We have the equation

Su + Ku = f, u ∈ L2,ρ, f ∈ L2,ρ. (17)

In L2,ρ we take two complete and orthonormal systems of functions (see
[10]):

(1) ϕk ≡ ck(1− x)1/2(1 + x)−1/2P (1/2,−1/2)
k , k = 0, 1, . . . ,

c0 = π, ck = (h(−1/2,1/2)
k )−1/2, k = 1, 2, . . . ,
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h(−1/2,1/2)
k = h(1/2,−1/2)

k =
2Γ(k + 1/2)Γ(k + 3/2)

(2k + 1)(k!)2
,

where P (1/2,−1/2)
k , k = 0, 1, . . . , are the Jacobi polynomials;

(2) ψk ≡ −ckP (−1/2,1/2)
k .

The relations

Sϕk = ψk, k = 0, 1, . . . (18)

(see [6]) are valid.
We seek an approximate solution of equation (17) in the form

un =
n

∑

k=1

akϕk.

With regard to (18) the Bubnov–Galerkin method

[Sun + Kun − f, ψi] = 0, i = 0, 1, . . . , n,

yields the algebraic system

ai +
n

∑

k=0

ak[Kϕk, ψi] = [f, ψi] i = 0, 1, . . . , n, (19)

which, by means of the orthoprojector Pn mapping L2,ρ onto the linear span
of the functions ψ0, ψ1, . . . , ψn, can be written in the form

wn + PnKS−1wn = Pnf, wn ≡ Sun =
n

∑

k=0

akψk. (20)

Let the approximate solution wn be found.
Taking one iteration

w̃n = −KS−1wn + f = −Kun + f,

we find

ũn = S−1w̃n =
(1 + t)1/2(1− t)−1/2

π

1
∫

−1

(1− x)1/2(1 + x)−1/2 w̃n(x)dx
t− x

.

Then

‖u− ũn‖ = ‖S−1(w − w̃n)‖ = ‖w − w̃n‖ ≤ C‖KS−1P (n)‖ · ‖P (n)w‖.
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Theorem 3. If there exists the inverse operator (I +KS−1)−1 mapping
L2,ρ onto itself, and the conditions w(m) ∈ LipM α, 0 < α ≤ 1, K(l)

t (x, t) ∈
LipM α1, 0 < α1 ≤ 1, ∀x ∈ [−1, 1], are fulfilled for the derivatives, then the
estimate

‖u− ũn‖ = O(n−(m+α)−(l+α1))

is valid.

§ 2. Method of Collocation with One Iteration

Using the collocation method, let us now consider the solution of equation
(6). Assume that the kernel K(x, t) and f(x) are continuous functions.

2.1. Index κ = 1. As in Subsection 1.1 we seek an approximate solution
of problem (8)–(9) in the form

Φn =
n

∑

k=1

akϕk.

By the collocation method the residual SΦn +KΦn−f1 (f1 is introduced
above by (8)) at discrete points will be equated to zero,

[SΦn + KΦn − f1]xj = 0, j = 1, 2, . . . , n.

This, owing to (10), results in the algebraic system

n
∑

k=1

akψk(xj) +
n

∑

k=1

ak(Kϕk)(xj) = f1(xj), j = 1, 2, . . . , n. (21)

As is known [11], if there exists the operator (I + KS−1)−1 mapping
L2,ρ onto itself, and as the collocation nodes are taken the roots of the
Chebyshev polynomials of the second kind Un, then for sufficiently large n
the algebraic system (21) has a unique solution, and the process converges
in the space L2,ρ. Analogous results are valid for the index κ = −1, 0.

Let us take the space of continuous functions C[−1, 1].
Let Πn be the projector defined by the Lagrange interpolation polynomial

Πnv = Lnv. With the help of this projector the algebraic system (21) can
be rewritten in the form

wn + Πn−1KS−1wn = Πn−1f1, wn ∈ L(n)
2,ρ ,

where L(n)
2,ρ is the linear span of functions ψ1, ψ2, . . . , ψn (ψk is a polynomial

of degree k − 1).
Let the approximate solution wn be found.
As in the Bubnov–Galerkin method we take one iteration

w̃n = −KS−1wn + f1 = −KΦn + f1.
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where w̃n satisfies the equation

w̃n + KS−1Πn−1w̃n = f1. (22)

By means of (13) and (22) we obtain

w − w̃n + KS−1w −KS−1Πn−1w̃n + KS−1w̃n −KS−1w̃n = 0,

(I + KS−1)(w − w̃n) = −KS−1Π(n−1)w̃n, Π(n−1) ≡ I −Πn−1,

w − w̃n = −(I + KS−1)−1KS−1Π(n−1)(−Kφn + f1),

‖w − w̃n‖ ≤ C
(

‖KS−1Π(n−1)K‖ · ‖Φn‖+ ‖KS−1Π(n−1)f1‖
)

.

For sufficiently large n we have [11]

wn = (I + Πn−1KS−1)−1Πn−1f1,

‖Φn‖ = ‖S−1wn‖ ≤ C‖Πn−1f1‖,
Πn−1f1 → f1, for n →∞, ∀f1 ∈ C[−1, 1],

i.e., ‖Φn‖ are uniformly bounded owing to the Erdös–Turan [10] and Ba-
nach–Steinhaus [8] theorems. Therefore

‖w − w̃n‖ ≤ C
(

‖KS−1Π(n−1)K‖+ ‖KS−1Π(n−1)f1‖
)

.

We find that

˜Φn ≡ S−1w̃n =
1
π

(1− t2)−1/2

1
∫

−1

(1− x2)1/2w̃n(x)dx
t− x

.

Then

‖u− ũn‖ = ‖Φ− ˜Φn‖ = ‖S−1(w − w̃n)‖ = ‖w − w̃n‖ ≤

≤ C
(

‖KS−1Π(n−1)K‖+ ‖KS−1Π(n−1)f1‖
)

, (23)

where ũn ≡ ˜Φn + pπ−1(1− x2)−1/2.
It is known [12] that

Π(n−1)v(t) = ω(t)δ(n)v(t), ∀v ∈ C[−1, 1],

where ω(t) ≡
∏n

i=1(t − ti) and δ(n)v(t) is the divided difference of the
continuous function v(t). If the roots of the Chebyshev polynomial of second
kind Un are taken as interpolation nodes, then (see [13])

Π(n−1)v(t) =
(π

2

)1/2 ̂Un(t)
2n δ(n)v(t)

(

̂Un(t) =
( 2

π

)1/2
Un(t)

)

.

Denote K1(x, t) ≡ (1− t2)−1/2K(x, t).
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Theorem 4. If there exists the inverse operator (I +KS−1)−1 mapping
L2,ρ, ρ = ρ1, onto itself, the roots of the second kind Chebyshev polynomial
Un are taken as collocation nodes, (SK1(x, t))m ∈ LPM α, 0 < α ≤ 1,
∀x ∈ [−1, 1], and the divided differences of all orders of the functions f1(x)
and K1(x, t) with respect to x are uniformly bounded ∀t ∈ [−1, 1], then the
estimate

‖u− ũn‖ = O
( 1

2n ·
1

(n− 1)m+α

)

is valid.

Proof. Let us estimate the norms on the right-hand side of inequality (23).
We have

‖KS−1Π(n−1)Kv‖L2,ρ =
∥

∥

∥

1
π

(

K(x, t),

S−1Π(n−1)(K(x, τ), v(τ))
)

∥

∥

∥ =
1
π2

∥

∥

∥

(

(1− t2)1/2(1− t2)−1/2K(x, t),

S−1Π(n−1)(1− τ2)1/2(1− τ2)−1/2(K(x, τ), v(τ))
)

∥

∥

∥ =

=
1
π2

∥

∥

∥

[

SK1(x, t), Π(n−1)[K1(x, τ), v(τ)]
]

∥

∥

∥ =

=
1
π2

∥

∥

∥

[

SK1(x, t), [Π(n−1)K1(x, τ), v(τ)]
]

∥

∥

∥ =

=
1
π2

∥

∥

∥

[

[SK1(x, t), Π(n−1)K1(x, τ)], v(τ)]
]

∥

∥

∥ =

=
1
π2

(π
2

)1/2∥
∥

∥

[

[SK1(x, t),
̂Un(t)
2n δ(n)K1(x, τ), v(τ)

]

∥

∥

∥ =

=
1
π2

(π
2

)1/2 1
2n

∥

∥

∥

[

δ(n)K1(x, τ)SK1(x, t), P (n−1)
̂Un(t)]v(τ)

]

∥

∥

∥ =

=
1
π2

(π
2

)1/2 1
2n

∥

∥

∥

[

[P (n−1)δ(n)K1(t, τ)SK1(x, t), ̂Un(t)]v(τ)
]

∥

∥

∥ ≤

≤ 1
π2

(π
2

)1/2 1
2n

∥

∥

∥

∥

∥

[

P (n−1)δ(n)K1(t, τ)SK1(x, t), ̂Un(t)]
∥

∥× ‖v(τ)‖
∥

∥

∥ ≤

≤ ‖v‖
π2

(π
2

)1/2 1
2n

∥

∥

∥

∥

∥

∥

∥

∥P (n−1)δ(n)K1(t, τ)SK1(x, t)
∥

∥

∥× ‖̂Un(t)‖
∥

∥

∥

∥

∥ ≤

≤ ‖v‖
π2

(π
2

)1/2 1
2n

∥

∥

∥

∥

∥

∥

∥

∥P (n−1)δ(n)K1(t, τ)SK1(x, t)
∥

∥

∥

∥

∥

∥

∥

∥.

Under the conditions of the theorem

(δ(n)K1(t, τ)SK1(x, t))(m) ∈ LipM α, 0 < α ≤ 1, ∀x, τ ∈ [−1, 1].

By Jackson’s theorem (see [7], [8])
∥

∥

∥P (n−1)δ(n)K1(t, τ)SK1(x, t)
∥

∥

∥ ≤
c′m2m+αM
(n− 1)m+α ,
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where c′m ≡ 126mmm

m!

(m+1
2

)α
.

Therefore we obtain

‖KS−1Π(n−1)K‖ = O
( 1

2n ·
1

(n− 1)m+α

)

. (24)

Furthermore,

‖KS−1Π(n−1)f1‖L2,ρ =
1
π
‖(K(x, t), S−1Π(n−1)f1)‖ =

=
1
π

(π
2

)1/2∥
∥

∥[SK1(x, t),
̂Un(t)
2n δ(n)f1

∥

∥

∥ =

=
1
π

(π
2

)1/2 1
2n

∥

∥

∥[δ(n)f1SK1(x, t), P (n−1)
̂Un(t)]

∥

∥

∥ =

=
1
π

(π
2

)1/2 1
2n

∥

∥

∥[P (n−1)δ(n)f1SK1(x, t), ̂Un(t)]
∥

∥

∥ ≤

≤ 1
π

(π
2

)1/2 1
2n

∥

∥

∥

∥

∥

∥P (n−1)δ(n)f1SK1(x, t)
∥

∥

∥×
∥

∥̂Un(t)
∥

∥

∥

∥

∥ ≤

≤ 1
π

(π
2

)1/2 1
2n

∥

∥

∥

∥

∥

∥P (n−1)δ(n)f1SK1(x, t)
∥

∥

∥

∥

∥

∥.

Under the conditions of the theorem
(

δ(n)f1SK1(x, t)
)(m)

∈ LipM α, 0 < α ≤ 1, ∀x ∈ [−1, 1].

Therefore we have ‖P (n−1)δ(n)f1SK1(x, t)‖ ≤ C′m2m+αM
(n−1)m+α ,

∥

∥

∥KS−1Π(n−1)f1

∥

∥

∥ = O
( 1

2n ·
1

(n− 1)m+α

)

. (25)

With the help of the obtained estimates (24) and (25), from (23) we
finally get

‖u− ũn‖ = O
( 1

2n ·
1

(n− 1)m+α

)

.

Remark 1. Under the conditions of the theorem we obtain for the ap-
proximate solution un that

‖u− un‖ ≤ C‖Π(n−1)w‖ = C
(π

2

)1/2∥
∥

∥

̂Un(t)
2n δ(n)w

∥

∥

∥ ≤

≤ C1

2n ‖̂Un(t)δ(n)w(t)‖ =
C1

2n

{

1
∫

−1

(1− t2)1/2
̂U2

n(t)(δ(n)w)2dt
}1/2

≤
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≤ C1

2n ‖δ
(n)w‖C

{

1
∫

−1

(1− t2)1/2
̂U2

n(t)dt
}1/2

=

=
C1

2n ‖δ
(n)w‖C × ‖̂Un(t)‖ =

C1

2n ‖δ
(n)w‖C =

C1

2n ‖δ
(n)(f1 −KΦ)‖C =

=
C1

2n

∥

∥

∥δ(n)(f1 −
1
π

[

K1(x, t), Φ(t)
]

∥

∥

∥

C
≤

≤ C1

2n

(

‖δ(n)f1‖C +
1
π

∥

∥

∥

[

δ(n)K1(x, t),Φ(t)
]

∥

∥

∥

C
≤

≤ C1

2n

(

‖δ(n)f1‖C +
1
π

∥

∥

∥

∥

∥δ(n)K1(x, t)
∥

∥×
∥

∥Φ(t)
∥

∥

∥

∥

∥

C
≤

≤ C1

2n

(

‖δ(n)f1‖C +
1
π

∥

∥

∥

∥

∥δ(n)K1(x, t)
∥

∥

C

)

≤ C2

2n .

2.2. Index κ = −1. Introduce the subspace C0[−1, 1] ⊂ C[−1, 1]; v ∈
C0[−1, 1] if [v, 1] = 0. C(n)[−1, 1] ⊂ C[−1, 1] is a linear span of polynomials
ψ0, ψ1, . . . , ψn. The projector can be determined as follows [11]:

Πnv = Lnv − a(n)
0 ψ0,

where Lnv ∈ C(n)[−1, 1] is the Lagrange polynomial and a(n)
0 is the coeffi-

cient of the Fourier series expansion a(n)
0 ≡ [Lnv, ψ0].

Again, as in Subsection 1.2, we seek an approximate solution in the form

un =
n

∑

k=1

akϕk.

We compose the algebraic system by the condition

Πn(Sun + Kun − f) = 0,

which results in

a0ψ0 +
n

∑

k=1

akψk(xj) +
n

∑

k=1

ak(Kϕk)(xj) = f(xj), j = 0, 1, . . . , n.

Using the projector, we can rewrite this algebraic system as

wn + ΠnKS−1wn = Πnf, wn ∈ L(n)
2,ρ ,

where L(n)
2,ρ is the linear span of the system of functions ψ0, ψ1, . . . , ψn.

Let the approximate solution wn be found. Taking one iteration

w̃n = −KS−1wn + f = −Kun + f,
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we find

ũn = S−1w̃n =
(1− t2)1/2

π

1
∫

−1

(1− x2)−1/2 w̃n(x)dx
t− x

.

Denote K1(x, t) ≡ (1− t2)1/2K(x, t).

Theorem 5. If there exists the inverse operator (I +KS−1)−1 mapping
L(r)

2,ρ, ρ = ρ2, onto itself, the roots of the Chebyshev polynomial of the first
kind Tn+1 are taken as collocation nodes, (SK1(x, t))m ∈ LipM α, 0<α≤1,
∀x ∈ [−1, 1], and the divided differences of all orders of the functions f(x)
and K1(x, t) with respect to x are uniformly bounded ∀t ∈ [−1, 1], then the
estimate

‖u− ũn‖ = O
( 1

2n ·
1

nm+α

)

is valid.

This theorem as well as the next one can be proved similarly to Theo-
rem 4.

Remark 2. As in Subsection 2.1, under the conditions of the theorem we
obtain

‖u− un‖ = O
( 1

2n

)

.

2.3. Index κ = 0. As in Subsection 1.3, an approximate solution is again
sought in the form

un =
n

∑

k=1

akϕk.

Equating the residuals to zero at the points x1, . . . , x, we obtain
[

Sun + Kun − f
]

xj
= 0 j = 0, 1, . . . , n,

which yields the algebraic system
n

∑

k=0

akψk(xj) +
n

∑

k=0

ak(Kϕk)(xj) = f(xj), j = 0, 1, . . . , n.

Just as for the index κ = 1 we can rewrite this system as

wn + ΠnKS−1wn = Πnf, wn ∈ L(n)
2,ρ ,

where L(n)
2,ρ is the linear span of functions ψ0, . . . , ψn.

Let the approximate solution wn be found.
Taking one iteration

w̃n = −KS−1wn + f = −Kun + f
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we find

ũn = S−1w̃n =
(1 + t)1/2(1− t)−1/2

π

1
∫

−1

(1− x)1/2(1 + x)−1/2 w̃n(x)dx
t− x

.

Denote K1(x, t) ≡ (1 + t)1/2(1− t)−1/2K(x, t).

Theorem 6. If there exists the inverse operator (I +KS−1)−1 mapping

L2,ρ, ρ = ρ3, onto itself, the roots of the Jacobi polynomial P ( 1
2 ,− 1

2 )
n+1 are taken

as collocation nodes, (SK1(x, t))(m) ∈ L : pMα, 0 < α ≤ 1, ∀x ∈ [−1, 1],
and the divided differences of all orders of the functions f(x) and K1(x, t)
with respect to x are uniformly bounded ∀t ∈ [−1, 1], then the estimate

‖u− ũn‖ = O
( 1

2n ·
1

nm+α

)

is valid.

Remark 3. Under the conditions of the theorem

‖u− un‖ = O
( 1

2n

)

.

Remark 4. If we require only that w(m) ∈ LipM α, 0 < α ≤ 1, then for
the collocation method for all values of the index κ = 1, 0,−1 we obtain
the same order of convergence

‖u− un‖ = O
( ln n

nm+α

)

for an approximate solution un in the respective weighted spaces.
Indeed, for any v ∈ C[−1, 1] we have Π(n)v = Π(n)P (n)v, where Π(n) ≡

I−Πn, P (n) ≡ I−Pn, where Πn is the Lagrange interpolation operator, and
Pn is the orthoprojector with respect to polynomials ̂T0, ̂T1, . . . , ̂Tn. If the
nodes in the interpolation Lagrange polynomial are taken with respect to
the weight, then Ln : C → L2,ρ are bounded by the Erdös–Turan theorem.
Therefore (see [13])

‖u− un‖L2,ρ ≤ C‖Π(n)u‖L2,ρ ≤ C1‖P (n)u‖C =

= O
( ln n

nm+α

)

(Πn = Ln).

As an example of the application of the above methods in the case of the
index κ = −1, let us consider the equation

1
π

1
∫

−1

u(t)dt
t− x

+
1
π

1
∫

−1

(x8t8 + x7t7)u(t)dt =
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=
( 2

π

)1/2( 3
128

x7 − 32x6 + 48x4 − 18x2 + 1
)

with the exact solution

u(x) = ϕ6(x) =
( 2

π

)1/2
(32x5 − 32x3 + 6x)(1− x2)1/2,

where {ϕk(x)}, k = 0, 1, . . . , is the orthonormal system of functions in L2,ρ2 .
We find the fifth approximation

u5(x) =
5

∑

k=1

akϕk(x), ϕk(x) =
( 2

π

)1/2
(1− x2)1/2Uk−1(x),

where Uk−1(x), k = 1, 2, . . . , are the Chebyshev polynomials of the second
kind.

Computations are carried out to within 10−7. u5(x) and ũ5(x) are cal-
culated.

In the case of the Bubnov–Galerkin method we have

‖∆u5‖ = 1, 0001151, ‖∆ũ5‖ = 0, 0151855,

‖∆u5‖
‖u‖

≈ 100, 01%,
‖∆ũ5‖
‖u‖

≈ 1, 52%

for an absolute and a relative error, respectively, while in the case of the
collocation method we obtain

‖∆u5‖ = 1, 0002931, ‖∆ũ5‖ = 0, 0159781,

‖∆u5‖
‖u‖

≈ 100, 03%,
‖∆ũ5‖
‖u‖

≈ 1, 60%.

The result is the expected one for u5(x), since in our example the function
ϕ6(x) is the exact solution.
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