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OSCILLATION AND NONOSCILLATION CRITERIA FOR
SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS

A. LOMTATIDZE

ABSTRACT. Sufficient conditions for oscillation and nonoscillation of
second-order linear equations are established.

1. STATEMENT OF THE PROBLEM AND FORMULATION OF BASIC
REsuLTS

Consider the differential equation
uw’ + pt)u =0, (1)

where p : [0, +00[— [0,+00] is an integrable function. By a solution of
equation (1) is understood a function w : [0,4o00[—] — 00, +00] which is
locally absolutely continuous together with its first derivative and satisfies
this equation almost everywhere.

Equation (1) is said to be oscillatory if it has a nontrivial solution with
an infinite number of zeros, and nonoscillatory otherwise.

It is known (see [1]) that if for some A < 1 the integral f+°o s*p(s)ds
diverges, then equation (1) is oscillatory. Therefore, we shall always assume
below that

+oo
/ s*p(s)ds < +oo for A < 1.
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Introduce the notation

ha(t) =t [ s*p(s)ds for t>0 and A <1,

ha(t) =t [ s*p(s)ds for t>0 and X\ >1,

e— . TT—3

p«(A) = lminf hy(¢), p*(A) = limsup hy(¢).

t——+o0 t——+oo

In [1] it is proved that equation (1) is oscillatory if p*(0) > 1 or p.(0) > 1,
and nonoscillatory if p*(0) < %. The oscillation criteria for equation (1)
written in terms of the numbers p,(\) and p*(\) have been established in [2].
Below we shall give the sufficient conditions for oscillation and nonoscillation
of equation (1) which make the above-mentioned results of papers [1, 2] more
precise and even extend them in some cases.

First of all, for the completenes of the picture we give a proposition,
which slightly generalizes one of E. Hille’s theorems [1].

Proposition. Let either p,(0) > 1 or p.(2) > 1. Then equation (1) is
oscillatory.

Theorem 1. Let p,(0) < i and p«(2) < %. Moreover, let either

) > 4(1A_A) + %(1 V1o 4p*(2)) (3)
for some A <1 or

2
() > ﬁ (VI (4)

for some A > 1. Then equation (1) is oscillatory.

Corollary 1. Let either

Jim (1= X)p*(A) > i (5)
Dim (- D) > (6)

Then equation (1) is oscillatory.
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Corollary 2 ([2]). For some X\ # 1 let

1= Alp«(A) > (7)

e

Then equation (1) is oscillatory.

Remark 1. Inequalities (5)—(7) are exact and cannot be weakened. In-
deed, let p(t) = 41z for t > 1. Then [1 — A|p.()\) = 1, and equation (1) has
oscillatory solution u(t) = v/t for t > 1.

Theorem 2. Let p.(0) < 3 and p.(2) < 1. Moreover, let either

1
I-

e(0) > @ and

> 2O (T a0+ VT 1.0) ©
for some A <1 or

p.(2) > @ and

> 2O L (0 4T .2)) Q

for some A > 1. Then equation (1) is oscillatory.

Theorem 3. Let p.(0) # 0 and p.(2) <
1 let p.(N) < % and either

po) > PO A (VIS0 4 VT )

%. Moreover, for some 0 < A <

and
) > 5+ 5 (VT8 E) +
A=A = Ve () + 20T = 4.2)
pe) < PO 4 A (VI .0 + VT .02)
and

PN > zl)*_((); + o L N (VI=5.0) + V1= 2.(2)).  (10)

Then equation (1) is oscillatory.
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Theorem 3'. Let p.(0) < % and p.(2) < 1. Moreover, for some 0 <
A < 1 let condition (10) be fulfilled, and let p.(0) > 1222 Then equation

1—
1
(1) is oscillatory.

Corollary 3. Let p.(0) < %, p.(2) < 1 and

=

X 1
p"(0) > p(0) + 5 (V1= 4p.(0) + 1 —4p.(2)).
Then equation (1) is oscillatory.

Corollary 4. For some X € [0, 1] let

1

A <p«(A) < I

1—A

and

pmn>1+pqn—%(y—x—¢a+AP—4a—Amxm)

Then equation (1) is oscillatory.

Theorem 4. For some X\ # 1 let

(2X — 1)(3 — 2)) 1

Then equation (1) is nonoscillatory.

Remark 2. As will be seen from the proof, Theorem 4 remains also valid
when the function p, generally speaking, does not have a constant sign. For
such a case this result for A = 0 is described in [3].

Corollary 5. Let p.(0) < § and p.(2) < §

1, and let the inequality

1

*A -

hold for some A €] — 00,1 — /1 —p (0)[U]1 + (/1 — p.(2),+00[. Then

equation (1) is nonoscillatory.
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2. SOME AUXILIARY PROPOSITIONS

Lemma 1. For equation (1) to be nonoscillatory, it is necessary and
sufficient that for some X # 1 the equation

v = l( — B3(t) + Asgn(l — A)hy(2))

2sgn(1 — \)
2 YT

; ha(t)v',  (12)

where hy is the function defined by (2), be nonoscillatory.

Proof. The equality p(t) = tA% —t*1hy(t)sgn(1 — \) determines the re-
lation between the nonoscillatory solution u of equation (1) and the solution

p, defined in some neighborhood of +o0, of the equation
pl=—tp M p — 2sgn(1 — A\t h3(t)p —
—t* 2R3 (1) + Asgn(1 — NtA L hy(8). (13)

On the other hand, the equality p(t) = t* 1;/((;)) determines the relation

between the nonoscillatory solution v of equation (11) and the solution p
defined in some neighborhood +0o of equation (13). Thus nonoscillation of
either of equation (1) or (12) results in nonoscillation of the other. [

Lemma 2. Let equation (1) be nonoscillatory. Then there exists tg > 0
such that the equation

p+p(t)p+p*=0 (14)

has a solution p :|tg, +00[— [0, +00[; moreover,

p(to+) = +oo, (t —to)p(t) <1 for to <t < +oo, (15)
Jim tp(t) =0 for X<1 (16)
and
liminftp(t) > A, limsuptp(t) < B, (17)
t—+o0 t——+o00
where

A:%(l—m), B= %(Hm)l. (18)

ISince equation (1) is nonoscillatory, we have p.(0) < i and p«(2) < i.
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Proof. Since equation (1) is nonoscillatory, there exists to > 0 such that the
solution u of equation (1) under the initial conditions u(tg) = 0, u/(¢p) = 1
satisfies the inequalities

w(t) >0, u'(t)>0 for tg<t< +oo.

Clearly, the function p(t) = % for ty < t < 400 is the solution of equation
(14), and lim;_,;, 4 = 4+00. From (14) we have

—r'(t)
p*(t)
Integrating the above inequality from ty to ¢, we obtain (¢t —tg)p(t) < 1 for
tg <t < 4o0. In particular, equality (16) holds for any A\ < 1.
Let us now show that inequalities (17) are valid. Assume p,(0) # 0 and
P«(2) # 0 (inequalities (17) are trivial, otherwise). Let us introduce the
notation

>1 for tg<t< +4oo.

r=liminftp(t), R = limsuptp(t).

t—+o0 t—+4o0

From (14) we easily find that for any ¢, > ¢

—+o00 “+o0

tp(t) =t / p(s)ds +t / P (s)ds,
2 f t (19)
tp(t) = tlpitl) - t_l/szp(s)ds +t! /sp(s)(Q — sp(s))ds

t1 t1
for t; <t < +o0.

This implies that 7 > p,.(0) and R < 1 — p.(2).
It is easily seen that for any 0 < ¢ < min{r,1 — R} there exists t. > t;
such that
+o0o
r—e<tpt) < Rte, t / p(s)ds > P.(0) — &,

t

t
1
;/SQp(S)dS >pe(2) —e for t. <t < +oo.

ty

Taking into account the above argument, from (19) we have
tp(t) > pu(0) —e+ (r —e)? for t. <t < +oo,

2p(t
tp(t)<%E)—p*<2)+€+(R+E)(2—R—E) for t. <t < 4o0,
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whence
r>p.(0) +7%, R<—p.(2)+R(2-R),

that is, » > A and R < B, where A and B are the numbers defined by
equalities (18). Hence (17) holds. O

Lemma 3. Let the functions g,q : [a,+o0o[— R be integrable in every
finite interval, and let v : [a, +00[—]0, +00[ be absolutely continuous together
with its first derivative on every compactum contained in [a, +o0o[. Moreover,
let the inequality

v (t) < g(t)o(t) + q(H)v'(2) (20)

hold almost everywhere in [a,4+o00[. Then the equation u” = g(t)u + q(t)u’
s monoscillatory.

3. PROOF OF THE BAsIC RESULTS

Proof of Theorem 1. Assume the contrary. Let equation (1) be nonoscil-
latory. Then, according to Lemma 2, equation (14) has the solution p :
Jto, +00[— [0, +00] satisfying conditions (15)—(17). Suppose A <1 (A > 1).
Because of (17) we have that for any € > 0 there exists t. > to such that

A—e<tp(t)<B+e for t.<t<4oo. (21)

Multiplying equality (14) by ¢*, integrating it from t to 4+oo (from t. to
t), and taking into account (15)—(17), we get

+oo )\2t>‘*1 +oo 1
A d :t)\ t 7_/ 2 - A1 2d
| i) o)+ G — [ (Fole) = 5u3 s <
t t
2

— ) f t t
4(1_)\)) or t. <t< -+

<" (B+e+

t
2

(/s’\p(s)ds <M1t (ﬁ —A+e+ t;\p(tg))

te

for t. <t <400 ),

whence we have p*(\) < 4(1/\7:\) + 30+ V1T —4p.(2) () < 4(?7:) —
(1= /1 —4p.(0))), which contradicts equality (3) ((4)). O
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To convince ourselves that Corollary 1 is valid, let us note that (5) ((6))
imply

i [(1- 05 () - AZ _ %(1 V1 4p.(2))] > 0
( lim [(A=1)p*(A) - % - %(1 + /1= 4p.(0))] > o).

Consequently, (3) ((4)) is fulfilled for some A < 1 (A > 1). Thus, according
to Theorem 1, equation (1) is oscillatory. As for Corollary 2, taking into
account that the mapping A — (1 — A)p.(A) for A <1 (A — (A —1)p.(N)
for A > 1) is non-decreasing (non-increasing), we easily find from (7) that
(5) ((6)) is fulfilled for some A.

Proof of Theorem 2. Assume the contrary. Let equation (1) be nonoscil-

latory. Then according to Lemma 2, equation (14) has the solution p :

Jto, +00[— [0, +o0] satisfying conditions (15)—(17). Suppose A <1 (A > 1).
A(2=))

By the conditions of the theorem, p,.(0) > @ (p«(2) > =5=%), which

implies that A > 3 (B < 3). On account of (17), for any 0 < e < A — 3
(0 < £ <  — B) there exists t. > to such that (21) holds.

Multiplying equality (14) by #*, integrating it from t to +oo (from t. to
t), and taking into account (15)—-(17), we easily find that

+o0 +oo
A / s*p(s)ds = tp(t) + 1= / s 2sp(s) (A — sp(s))ds <

1
<B+E+ﬁ(A—s)()\—A+E) for t. <t <400

t
1
(tlA/s)‘p(s)ds <e—A+ ﬁ(B +e)A—B—¢)+
te

+t7Mop(te) for t. <t < +oo>.

This implies

r < 2O (0 + VI .@)
<2 (o + Vi),

which contradicts condition (8) ((9)). O
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Proof of Theorems 3 and 3'. Assume the contrary. Let equation (1) be
nonoscillatory. Then according to Lemma 2, equation (14) has the solution
p :Jto, +oo[— [0, +oo[ satifying conditions (15)—(17). Multiplying equality
(14) by t*, integrating it from ¢ to 4+oc, and taking into account (16), we
easily obtain

+oo

tp(t) = ha(t) — M1 =2 / s 1p(s)ds +
t
+oo

=2 / s*p%(s)ds for ty <t < +oo, (22)
t

where h) is the function defined by equality (2).
Introduce the notation

r = liminf tp(t).

t—+o00

On account of (17) we have r > 0. Therefore for any 0 <e <max{r, p.(\)}
there exists t. > g such that

r—e <tp(t) < B+e,hx(t) >pi(N) —e for t. <t < +oo.
Owing to the above arguments, we find from (22) that
(1=XNhy<B+e—(r—e)? for t. <t < 4oo,

A
tp(t) > ps(A) —e — ——(B+¢) + (r—e)? for t.<t< +oo,

1—A 1-A
which implies
B —r?
* <
PPN < 5 (23)
A r?
> - B+ —.
rzpN 3B

The latter inequality results in r > x1, where x7 is the least root of the

equation
A
2
— «(AN) — ——=B=0.
I S Gl g

Thus r > max{A,z:}. From (23) we have that if A < z;, then
p*(A) £ B+pa(A) — a1,

but if A > x1, then
1 1

* < _- B - 2

p(A)_l—)\B 1_)\A,
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which contradicts the conditions of the theorem. [
Proof of Theorem 4. From (11) we have that for some ¢5 > 0
(2A —1)(3 —2))

ha(t for to <t
71— N < /\()<4‘1_>\| or tp <t < 4oo,
whence
202 — 44X +1 22 —1)(3—2))
h3(t ———hy(t — f t t .
T I T v

Taking into consideration the latter inequality, we can easily see that (20)
holds, where

1—2X

v(t) = t30=%  for to <t < +oo,
1
g(t) = —?(hi(t) — Asgn(1l— A)hy(t)) for ty <t < +oo,

and 9
q(t) = 3 sgn(l — Aha(t) for tg <t < +oo.

Consequently, according to Lemmas 1 and 3, equation (1) is nonoscilla-
tory. [
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