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NON-ABELIAN COHOMOLOGY OF GROUPS

H. INASSARIDZE

Abstract. Following Guin’s approach to non-abelian cohomology [4]
and, using the notion of a crossed bimodule, a second pointed set
of cohomology is defined with coefficients in a crossed module, and
Guin’s six-term exact cohomology sequence is extended to a nine-term
exact sequence of cohomology up to dimension 2.

Introduction

In this and forthcoming papers [1] we discuss the cohomology H∗(G,A)
of a group G with coefficients in a G-group A.When A is abelian this co-
homology is the well-known classical cohomology of groups which can be
defined as derived functors either of the functor HomZ[G](−, A) in the cate-
gory of Z[G]-modules or of the functor Der(−, A) in the category of groups
acting on A. When A is non-abelian, a functorial pointed set of cohomology
H1(G, A) not equipped with a group structure was defined in a natural way
in [2]. Guin defined, in [3]–[4], a first cohomology group when the coeffi-
cient group is a crossed G-module and obtained a six-term exact sequence of
cohomology for any short exact coefficient sequence of crossed G-modules.

Our approach to a non-abelian cohomology of groups follows Guin’s co-
homology theory of groups [3]–[4] which differs from the classical first non-
abelian cohomology pointed set [2] and from the setting of various papers
on non-abelian cohomology [5]–[7] extending the classical exact non-abelian
cohomology sequence from lower dimensions [2] to higher dimensions.

Let G and R be groups and let (A,µ) be a crossed R-module. We in-
troduce the notion of a crossed G − R-bimodule signifying an action of G
on the crossed R-module (A,µ) and generalizing the notion of a crossed
G-module.The group of derivations Der(G, (A, µ)) from G to (A,µ) is de-
fined to obtain a pointed set of cohomology H2(G,A) when A is a crossed
G-module. The group Der(G, (A,µ)) and the pointed set H2(G,A) coincide
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respectively with the group DerG(G,A) of Guin [4] when (A,µ) is a crossed
G-module and with the usual cohomology group when A is abelian. A coef-
ficient short exact sequence of crossed G-modules gives rise to a nine-term
exact sequence of cohomology which extends the six-term exact cohomology
sequence of Guin [4]. In [1] these results are generalized when the coefficients
are crossed bimodules; in that case H1(G, (A,µ)) is equipped with a partial
product, and, finally, in [1] the definition of a pointed set of cohomology
Hn(G, (A,µ)) of a group G with coefficients in a crossed G − R-bimodule
(A,µ) for all n ≥ 1 is given.

All considered groups will be arbitrary (not necessarily commutative).
An action of a group G on a group A means an action on the left of G on A
by automorphisms and will be denoted by ga, g ∈ G, a ∈ A. We assume that
G acts on itself by conjugation. The center of a group G will be denoted
by Z(G). If the groups G and R act on a group A then the notation gra
means g(ra), g ∈ G, r ∈ R, a ∈ A.

1. Crossed Bimodules

A precrossed G-module (A, µ) consists of a group G acting on a group A
and a homomorphism µ : A −→ G such that

µ(ga) = gµ(a)g−1, g ∈ G, a ∈ A.

If in addition we have
µ(a)a

′
= aa

′
a−1

for a, a
′ ∈ A, then (A,µ) is a crossed G-module.

Definition 1. Let G, R, and A be groups. It will be said that (A, µ) is
a precrossed G−R-bimodule if

(1) (A,µ) is a precrossed R-module,
(2) G acts on R and A,
(3) the homomorphism µ : A −→ R is a homomorphism of G-groups,
(4) (gr)a =grg−1

a (compatibility condition) for g ∈ G, r ∈ R, a ∈ A. If
in addition (A,µ) is a crossed R-module then (A,µ) will be called a crossed
G−R-bimodule. If conditions (1)–(3) hold it will be said that the group G
acts on the precrossed (resp. crossed) R-module (A,µ).

It is easy to see that any precrossed (resp. crossed) G-module (A,µ) is
in a natural way a precrossed (resp. crossed) G − G-bimodule. It is also
clear that if (A,µ) is a crossed G − R-bimodule and f : G

′ −→ G is a
homomorphism of groups then (A,µ) is a crossed G

′ −R-bimodule induced
by f , G

′
acting on A and R via f .

A homomorphism f : (A,µ) −→ (B, λ) of precrossed (crossed) G − R-
bimodules is a homomorphism of groups f : A −→ B such that

(1) f(ra) =r f(a), r ∈ R, a ∈ A,
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(2) f(ga) =g f(a), g ∈ G, a ∈ A,
(3) µ = λf.

2. The Group Der (G, (A,µ))

Consider a crossed G−R-bimodule (A,µ).

Definition 2. Denote by Der(G, (A,µ)) the set of pairs (α, r) where α
is a crossed homomorphism from G to A, i.e.,

α(xy) = α(x)xα(y), x, y ∈ G,

and r is an element of R such that

µα(x) = r xr−1, x ∈ G.

This set will be called the set of derivations from G to (A,µ).

We define in Der(G, (A,µ)) a product by

(α, r)(β, s) = (α ∗ β, rs),

where (α ∗ β)(x) = rβ(x)α(x), x ∈ G.

Proposition 3. Under the aforementioned product Der(G, (A,µ)) be-
comes a group which coincides with the group DerG(G, A) of Guin when
(A,µ) is a crossed G-module viewed as a crossed G−G-bimodule.

Proof. We have to show that (α ∗ β, rs) ∈ Der(G, (A,µ)). Put γ = α ∗ β.
At first we prove that γ is a crossed homomorphism. In effect, we have

γ(xy) = rβ(xy)α(xy) = r(β(x)x β(x))α(x) xα(y) =

= rβ(x)rxβ(y)α(x)xα(y).

On the other hand,

γ(x) xγ(y) = rβ(x)α(x) x(rβ(y)α(y)) =

= rβ(x)α(x) xrβ(y) xα(y).

For any a ∈ A and (α, r) ∈ Der(G, (A,µ)) the equality

α(x) xra = rxaα(x), x ∈ G, (1)

holds, since α(x) xraα(x)−1 = µα(x)·xra = r·xr−1
(xra) = rxr−1·x−1·xra =

rxa.
It follows that γ(xy) = γ(x) xγ(y). Further,we have

µγ(x) = µ(rβ(x)α(x)) = rµβ(x)µα(x) =

= r(s xs−1)r xr−1 = rs r(xs−1)r xr−1 = rsrxs−1 xr−1 =

= rsx(rs)−1.
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Therefore (α ∗ β, rs) ∈ Der(G, (A,µ)).
It is evident that this product is associative. It is also obvious that

(α0, 1) ∈ Der(G, (A,µ)), where α0(x) = 1 for all x ∈ G, and (α0, 1) is the
unit of Der(G, (A, µ)).

Now we will show that for (α, r) ∈ Der(G, (A,µ)) we have

r−1·xa r−1
α(x)−1 = r−1

α(x)−1 xr−1
a, x ∈ G, a ∈ A. (2)

Since µ(r−1
α(x)−1) = r−1 · µα(x)−1 · r = r−1 xr, this implies

µ(r−1
α(x)−1)(xr−1

a) = r−1xr(xr−1
a) =r−1xrx−1xr−1

a =r−1x a.

On the other hand,

µ(r−1
α(x)−1)(xr−1

a) = r−1α(x) ·xr−1
a ·r

−1
α(x)

and equality (2) is proved.
For (α, r)∈Der(G, (A,µ)) take the pair (α, r−1) where α(x)=r−1

α(x)−1,
x ∈ G. It will be shown that (α, r−1) ∈ Der(G, (A,µ)). We have

α(xy) = r−1
α(xy)−1 = r−1

(xα(y)−1 · α(x)−1) =

= r−1xα(y)−1 r−1
α(x)−1

and α(x) ·x α(y) = r−1
α(x)−1 xr−1

α(y)−1.
By (2) one gets α(xy) = α(x) xα(y), i.e., α is a crossed homomorphism.
We also have

µα(x) = µ(r−1
α(x)−1) = r−1µα(x)−1r = r−1xr · r−1 · r = r−1xr.

Therefore (α, r−1) ∈ Der(G, (A,µ)).
It is easy to check that

(α, r)(α, r−1) = (α, r−1)(α, r) = (α0, 1).

We conclude that Der(G, (A, µ)) is a group. If (A, µ) is a crossed G-
module and (α, g) ∈ Der(G, (A,µ)) then µα(x) = g xg−1 = gxg−1x−1.

In DerG(G,A) this product was defined by Guin [4] and it follows that
the group Der(G, (A, µ)) coincides with DerG(G,A) when (A,µ) is a crossed
G-module.

If (A,µ) is a precrossed R-module and (B, λ) is a crossed R-module then
(B, λ) is a crossed A−R-bimodule induced by µ and the group DerG(A, B)
of Guin [4] is the group Der(A, (B, λ)).

It is clear that a homomorphism of G−R-bimodules f : (A,µ) −→ (B, λ)
induces a homomorphism

f∗ : Der(G, (A, µ)) −→ Der(G, (B, λ))
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given by (α, r) 7−→ (fα, r).
There is an action of G on Der(G, (A,µ)) defined by

g(α, r) = (α̃,g r), g ∈ G, r ∈ R,

with α̃(x) = gα(g−1
x), x ∈ G.

In effect,we have

α̃(xy) = gα(g−1
(xy)) = gα(g−1

x g−1
y) = gα(g−1

x) xgα(g−1
y) =

= α̃(x) xα̃(y)

and µα̃(x) = µ(gα(g−1
x)) = gµα(g−1

x) = g(r (g−1
x)r−1) = gr xgr−1,

whence (α̃,g r) ∈ Der(G, (A, µ)). It is easy to verify that one gets an action
of G on the group Der(G, (A,µ)). In effect,

g((α, r)(β, s)) =g (α ∗ β, rs) = (α̃ ∗ β,g (rs)),

where (α̃× β)(x) = g(α ∗ β)(g−1
x) = g(rβ(g−1

x)) · α(g−1
x) = grβ(g−1

x)) ·
gα(g−1

x) and g(α, r) g(β, s) = (α̃,g r)(˜β,g s) = (α̃ ∗ β,g (rs)) where (α̃ ∗
˜β)(x) =

gr(gβ(g−1
x)) gα(g−1

x) = grg−1
(gβ(g−1

x)) gα(g−1
x) = grβ(g−1

x)
gα(g−1

x).
Thus, g((α, r)(β, s)) = g(α, r) g(β, s) and it is clear that gg

′

(α, r) =
g(g

′

(α, r)). This action on the group DerG(A,B) is defined in [4].
Let (A,µ) be a crossed G−R-bimodule. If R acts on G and the compat-

ibility condition

(rg)a =rgr−1
a, (rg)r

′
= rgr−1

r
′

for r, r
′
∈ R, g ∈ G, a ∈ A, (3)

holds, then there is also an action of R on Der(G, (A,µ)) given by
r(α, s) = (α̃,r s),

where α̃(x) = rα(r−1
x), x ∈ G.

A calculation similar to the case of the action of G on Der(G, (A,µ))
shows that (α̃,r s) is an element of Der(G, (A,µ)).

Let G and R be groups acting on each other and on themselves by con-
jugation. It is known [8] that these actions are said to be compatible if

(gr)g
′
= grg−1

g
′
, (rg)r

′
= rgr−1

r
′

for g, g
′ ∈ G and r, r

′ ∈ R.

Definition 4. It will be said that the groups G and R act on a group A
compatibly if

(gr)a = grg−1
a, (rg)a = rgr−1

a

for g ∈ G, r ∈ R, a ∈ A.
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Proposition 5. Let (A,µ) be a crossed G−R-bimodule. Let the groups
G and R act on each other and on A compatibly. Under the aforemen-
tioned actions of G and R on Der(G, (A,µ)) and the homomorphism γ :
Der(G, (A,µ)) −→ R given by (α, r) 7−→ r, the pair (Der(G, (A,µ)), γ) is a
precrossed G−R-bimodule.

Proof. We have only to show that

(gr)(α, s) = grg−1
(α, s),

for g ∈ G, r ∈ R.
In effect,

(gr)(α, s) = (β,(
gr) s),

where β(x) = (gr)α((
gr−1)x) = grg−1

α(gr−1g−1
x), x ∈ G.

On the other hand,

grg−1
(α, s) = (γ,grg−1

s),

where γ(x) = grg−1
α(gr−1g−1

x) and

grg−1
s = g(rg−1

sr−1) = grs gr−1 = (gr)s.

Therefore (gr)(α, s) = grg−1
(α, s).

3. The Pointed Set H2(G,A)

We will use the group of derivations in a crossed bimodule to define
H2(G,A) when A is a crossed G-module.

We start by the following characterization of H2(G, A) when A is a Z[G]-
module.

Consider the diagram

M
l0−→→
l1

F τ−→ G (4)

where F is a free group, τ is a surjective homomorphism, M is the set of pairs
(x, y), x, y ∈ F , such that τ(x) = τ(y) and l0, l1are canonical projections,
l0(x, y) = x, l1(x, y) = y. Thus, (M, l0, l1) is the simplicial kernel of τ . Put
∆ = {(x, x), x ∈ F} ⊂ M .

Let f be a map from an arbitrary group C to a group D. Then in what
follows by f−1 : C −→ D will always be denoted a map with f−1(c) =
f(c)−1, c ∈ C.

Let A be a Z[G]-module. It is clear that A is a M -module via τ l0 and a
F -module via τ . Denote by Z1(M,A) (resp. Z1(F, A)) the abelian group
of crossed homomorphims from M to A (resp. from F to A). Let ˜Z1(M, A)
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be a subgroup of Z1(M,A) consisting of all elements α such that α(∆) = 1.
There is a homomorphism

κ : Z1(F,A) −→ ˜Z1(M, A)

defined by β 7−→ βl0βl−1
1 .

Proposition 6. H2(G,A) is canonically isomorphic to Coker κ.

Proof. It is sufficient to show that Coker κ is isomorphic to Opext(G,A, ϕ)
where ϕ : G −→ Aut(A) denotes the action of G on A.

Let α ∈ ˜Z1(M,A) and introduce in the semi-direct product A ./ F the
relation

(a, x) ∼ (a
′
, x

′
) ⇐⇒ τ(x) = τ(x

′
)

and a · α(x, x
′
) = a

′
.

It is easy to see that this relation is an equivalence; use the fact that
if (x, x

′
, x

′′
) is a triple of elements of F such that τ(x) = τ(x

′
) = τ(x

′′
)

then α(x, x
′′
) = α(x, x

′
)α(x

′
, x

′′
). Denote this equivalence by ρ and take

the quotient set (A ./ F )/ρ. We will show that ρ is in fact a congruence
and therefore C = (A ./ F )/ρ is a group.

Let (a, x) ∼ (a
′
, x

′
) and (b, y) ∼ (b

′
, y
′
). Then τ(x) = τ(x

′
), τ(y) = τ(y

′
),

aα(x, x
′
) = a

′
, bα(y, y

′
) = b

′
.

Further, (a, x)(b, y) = (a xb, xy), (a
′
, x

′
)(b

′
, y
′
) = (a

′ x
′

b
′
, x

′
y
′
).

We have
xb xα(y, y

′
) = xb

′
= x

′

b
′
,

whence a·α(x, x
′
) xb xα(y, y

′
)=a

′ x
′

b
′
. Since α(xy, x

′
y
′
)=α(x, x

′
) xα(y, y

′
),

it follows that
a xbα(xy, x

′
y
′
) = a

′ x
′

b
′
.

One gets a commutative diagram

M
l0
−→−→
l1

F τ−→ G

↓ α ↓ β ‖
A σ−→ C

ψ−→ G

where σ(a) = [(a, 1)], ψ[(a, x)] = τ(x), β(x) = [(1, x)]. Denote by E the
exact sequence

0 −→ A σ−→ C
ψ−→ G −→ 1

which gives an element of Opext(G,A, ϕ).
Define a map

ϑ : Coker κ −→ Opext(g,A, ϕ)

given by [α] 7−→ [E].
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By standard calculations it can be easily proved that ϑ is a correctly
defined homomorphism which is bijective.

Let (A,µ) be a crossed G-module. Then (A,µ) is a crossed M − G-
bimodule induced by τ l0 ( or by τ l1 ) and a crossed F−G-bimodule induced
by τ (see diagram (4)).

Consider the group Der(M, (A, µ)) and let ˜Der(M, (A,µ)) be the sub-
group of Der(M, (A,µ)) consisting of elements (α, g) such that α(∆) = 1.
If (α, g) ∈ ˜Der(M, (A,µ)) this implies g ∈ Z(G). Then we have µα(m) = 1
for any m ∈ M and α(M) ⊂ Z(A). Denote by ˜Z1(M, (A,µ)) a subset of
˜Der(M, (A,µ)) consisting of all elements of the form (α, 1).

Define, on the set ˜Z1(M, (A,µ)), a relation

(α
′
, 1) ∼ (α, 1) ⇔ ∃(β, h) ∈ Der(F, (A,µ))

such that
(α

′
, 1) = (βl0, h)(α, 1)(βl1, h)−1

in the group Der(M, (A,µ)).
We see that if (α

′
, 1) ∼ (α, 1) one has

α
′
(x) = βl1(x)−1hα(x)βl0(x), x ∈ M,

for some (β, h) ∈ Der(F, (A,µ)).

Proposition 7. The relation ∼ defined on ˜Z1(M, (A,µ)) is an equiva-
lence.

Proof. The reflexivity is clear. If (α
′
, 1) ∼ (α, 1), i.e., (α

′
, 1) = (βl0, h)(α, 1)

(βl1, h)−1 where (β, h) ∈ Der(F, (A,µ)), then (α, 1) = (βl0, h)−1(α
′
, 1)

(βl1, h) where (βl0, h)−1 = (˜βl0, h−1) and (βl1, h) = (˜βl1, h−1)−1 with
(˜β, h−1) = (β, h)−1 ∈ Der(F, (A, µ)). Thus the relation ∼ is symmetric.

Let (α
′
, 1) ∼ (α, 1) and (α

′′
, 1) ∼ (α

′
, 1); then one has

(α
′
, 1) = (βl0, h)(α, 1)(βl1, h)−1,

(α
′′
, 1) = (β

′
l0, h

′
)(α

′
, 1)(β

′
l1, h

′
)−1,

where (β, h), (β
′
, h

′
) ∈ Der(F, (A, µ)).

It follows that

(α
′′
, 1) = (β

′
l0, h

′
)(βl0, h)(α, 1)(βl1, h)−1(β

′
l1, h

′
)−1 =

= ((β
′
∗ β)l0, h

′
h)(α, 1)((β

′
∗ β)l1, h

′
h)−1,

where (β
′ ∗ β, h

′
h) = (β

′
, h

′
)(β, h) ∈ Der(F, (A,µ)). This means that

(α
′′
, 1) ∼ (α, 1) and the relation ∼ is an equivalence.
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Proposition 8. Let (A,µ) be a crossed G-module. Then the quotient
set ˜Z1(M, (A, µ))/ ∼ is independent of the diagram (4) and is unique up to
bijection.

We need the

Lemma 9. Let A be a G-group and let α : M −→ A be a crossed homo-
morphism such that α(∆) = 1. Then there exists a map q : F −→ A such
that

α(y) = ql1(y)−1ql0(y), y ∈ M.

Proof. Observe that if (x, x
′′
), (x

′
, x

′′
) ∈ M , then α(x, x

′′
) = α(x

′
, x

′′
)

α(x, x
′
). In effect,the equality (x, x

′′
) = (1, x

′′
x
′−1

)(x, x
′
) implies α(x, x

′′
) =

α(1, x
′′
x
′−1

) α(x, x
′
). But (x

′
, x

′′
) = (1, x

′′
x
′−1

)(x
′
, x

′
). Thus α(x

′
, x

′′
) =

α(1, x
′′
x
′−1

) α(x
′
, x

′
) = α(1, x

′′
x
′−1

) and we get the desired equality.
In particular, applying this equality one gets α(x, x) = α(x

′
, x) · α(x, x

′
)

for (x, x), (x
′
, x) ∈ M . Therefore α(x

′
, x) = α(x, x

′
)−1 for any (x, x

′
) ∈ M .

Take a section η : G −→ F , τη = 1G and define a map q : F −→ A by

q(x) = α(x, ητ(x)), x ∈ F.

For (x, x
′
) ∈ M one has

ql1(x, x
′
)−1ql0(x, x

′
) = q(x

′
)−1q(x) = (α(x

′
, ητ(x

′
))−1α(x, ητ(x)) =

= α(ητ(x
′
), x

′
)α(x, ητ(x)).

On the other hand, since α(x, x
′
) = α(1, x

′
x−1) for all (x, x

′
) ∈ M , one

has α(ητ(x
′
), x

′
) = α(1, x

′
ητ(x

′
)−1) and α(x, ητ(x)) = α(1, ητ(x)x−1).

But (1, x
′
ητ(x

′
)−1)(1, ητ(x)x−1) = (1, x

′
x−1). Therefore, α(x, x

′
) =

α(1, x
′
ητ(x

′
)−1)α(1, ητ(x)x−1) = ql1(x, x

′
)−1ql0(x, x

′
).

Proof of Proposition 8. Consider a commutative diagram

M
′

l
′
0−→→

l′1

F
′ τ

′

−→ G

γ1 ↓ γ2 γ1 ↓ γ2 ‖

M
l0−→→
l1

F τ−→ G

where (M, l0, l1) and (M
′
, l
′

0, l
′

1) are the simplicial kernels of τ1and τ2 res-
pectively, liγ1 = γ1l

′

i, liγ2 = γ2l
′

i, i = 0, 1, τγ1 = τγ2 = τ
′
.

The pair (γi, γi) induces a homomorphism

Der(M, (A,µ)) −→ Der(M
′
, (A,µ))

given by (α, g) 7−→ (αγi, g), i = 1, 2.
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If (α
′
, 1) ∼ (α, 1), i.e.,

(α
′
, 1) = (βl0, h)(α, 1)(βl1, h)−1

with (β, h) ∈ Der(F, (A,µ)), then

α
′
γi(y) = βγil

′

1(y)−1hαγi(y)βγil
′

0(y), y ∈ M
′
.

Thus (α
′
γi, 1) ∼ (αγi, 1), i = 1, 2, and one gets a natural map

εi : ˜Z1(M, (A,µ))/ ∼−→ ˜Z1(M
′
, (A,µ))/ ∼

induced by the pair (γi, γi) and given by [(α, 1)] 7−→ [(αγi, 1)], i = 1, 2.
We will show that ε1 = ε2. By Lemma 9 there is a map q : F −→ A such

that
α(y) = ql1(y)−1ql0(y), y ∈ M.

Consider the homomorphism s : F
′ −→ M given by

s(x
′
) = (γ1(x

′
), γ2(x

′
)), x

′
∈ F

′
.

It is clear that (αs, 1) ∈ Der(F
′
, (A, µ)).

Further we have

((αsl1)−1αγ2αsl
′

0)(x
′

0, x
′

1) = αs(x
′

1)
−1 αγ2(x

′

0, x
′

1)αs(x
′

0) =

= α(γ1(x
′

1), γ2(x
′

1))
−1αγ2(x

′

0, x
′

1) α(γ1(x
′

0), γ2(x
′

0)) = qγ1(x
′

1)
−1qγ2(x

′

1) =

= qγ2(x
′

1)
−1qγ2(x

′

0)qγ2(x
′

0)
−1qγ1(x

′

0) = qγ1(x
′

1)
−1qγ1(x

′

0) = αγ1(x
′

0, x
′

1)

for (x
′

0, x
′

1) ∈ M
′
.

Therefore (αγ1, 1) ∼ (αγ2, 1) with (αs, 1) ∈ Der(F
′
, (A,µ)) and one gets

ε1 = ε2.
The rest of the proof of the uniqueness is standard.

Let (A,µ) be a crossed G − R-bimodule. Denote by I Der(G, (A,µ)) a
subgroup of Der(G, (A,µ)) consisting of elements of the form (α, r) with
r ∈ H0(G,R). If (A,µ) is a crossed G-module viewed as a crossed G − G-
bimodule then

I Der(G, (A,µ)) = {(α, r), g ∈ Z(G)}.

Consider the diagram

MG

l0
−→−→
l1

FG
τG−→ G (5)

where FG is the free group generated by G, τG is the canonical homomor-
phism and (MG, l0, l1) is the simplicial kernel of τG.
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Proposition 10. Let (A, µ) be a crossed G-module. Then:
(i) there is a canonical surjective map

ϑ
′
: H2(G,Kerµ) −→ ˜Z1(MG, (A,µ))/ ∼

given by the composite map [E] ϑ−1

7−→ [α] 7−→ [(α, 1)];
(ii) if we assume Der(FG, (A,µ)) = I Der(FG, (A,µ)) (in particular, it is

so if either µ is the trivial map or G is abelian) we can introduce, in the
pointed set ˜Z1(MG, (A, µ))/ ∼, an abelian group structure defined by

[(α, 1)][(β, 1)] = [(α ∗ β, 1)]

where (A,µ) is viewed as a crossed FG − G-bimodule induced by τGand
[(α, 1)] denotes the equivalence class containing (α, 1). Under this product
the map ϑ

′
becomes an isomorphism.

Proof. To prove (i) we have only to show the correctness of [α] 7−→ [(α, 1)]
where α : MG −→ A is a crossed homomorphism with α(∆) = 1 and
α(MG) ⊂ Ker µ.

Let α
′ ∈ [α], i.e.,

α
′
(x) = βl−1

1 (x)α(x)βl0(x), x ∈ MG,

where β : FG −→ Ker µ is a crossed homomorphism. Then (β, 1) ∈
Der(FG, (A,µ)) and we have

(α
′
, 1) = (βl0, 1)(α, 1)(βl1, 1)−1.

The surjectivity of ϑ
′
is clear.

(ii) Let (α
′
, 1) ∼ (α, 1). Then

α
′
(x) = ηl1(x)−1gα(x)ηl0(x), x ∈ MG,

for some (η, g) ∈ Der(FG, (A,µ)). By assumption, g ∈ Z(G). Thus µη(x) =
gxg−1x−1 = 1, x ∈ MG. It follows that [α

′
] = [gα] with g ∈ Z(G). But

it is known that Z(G) acts trivially on H2(G,Ker µ). Therefore we have
[α
′
] = [α]. Hence there is a crossed homomorphism γ : FG −→ Ker µ such

that
α
′
(x) = γl−1

1 (x)α(x)γl0(x), x ∈ MG.

It follows that if (α, 1) ∼ (α
′
, 1) and (β, 1) ∼ (β

′
, 1) then (α ∗ β, 1) ∼

(α
′ ∗ β

′
, 1). We conclude that the product is correctly defined and the map

ϑ
′
is an isomorphism when Der(FG, (A, µ)) = I Der(FG, (A,µ)).

Proposition10 motivates the following definition of the second cohomol-
ogy of groups with coefficients in crossed modules.
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Definition 11. Let (A,µ) be a crossed G-module. One denotes by
H2(G,A) the quotient set ˜Z1(M, (A,µ)) / ∼ which will be called the second
set of cohomology of G with coefficients in the crossed G-module (A,µ).

Remark. Using diagram (4) it is possible to define the second cohomol-
ogy of G with coefficients in a crossed G-module (A,µ) by a different “less
abelian” way. Consider the set ˜Z1(M, A) of all crossed homomorphims
α : M −→ A with α(∆) = 1 (the equality µα = 1 is not required and there-
fore α(M) is not necessarily contained in Z(A)). Introduce in ˜Z1(M, A) a
relation ∼ of equivalence as follows:

α
′ ∼ α if ∃ (β, h)Der(F, (A, µ)) such that α

′
(x) = βl1(x)−1 hα(x) βl0(x),

x ∈ M .
Define H2(G,A) = ˜Z1(M, A) / ∼. It is obvious that H2(G,A) ⊂

H2(G,A). But it seems the exact cohomology sequence (Theorem 13) does
not hold for H2(G,A).

It is clear H2(G, A) is a pointed set with [(α0, 1)] as a distinguished
element where α0(y) = 1 for all y ∈ M .

A homomorphism of crossed G-modules f : (A,µ) −→ (B, λ) induces a
map of pointed sets

f2 : H2(G,A) −→ H2(G,B), f2([(α, 1)]) = [(fα, 1)].

There is an action of G on FG (see diagram (5)) defined as follows:
g(| g1 |ε · · · | gn |ε) =|g g1 |ε · · · |g gn |ε, g, g1, . . . , gn ∈ G,

where ε = ±1.
This action induces an action of G on MG by

g(x, x
′
) = (gx,g x

′
), g ∈ G, (x, x

′
) ∈ MG.

Let (A,µ) be a crossed G-module. Then we have an action of G on
Der(MG, (A,µ)) given by

g(α, h) = (α̃,g h)

where α̃(m) = gα(g−1
m), g ∈ G, m ∈ MG.

Proposition 12. Let (A,µ) be a crossed G-module. There is an action
of G on H2(G,A) induced by the above-defined action of G on Der(MG, (A,µ))
under which the center Z(G) acts trivially.

Proof. Obviously, the action of G on Der(MG, (A,µ)) induces an action of
G on ˜Der(MG, (A,µ)). Thus one gets an action of G on ˜Z1(MG, (A, µ)).

If (α
′
, 1) ∼ (α, 1), where (α, 1), (α

′
, 1) ∈ ˜Z1(MG, (A, µ)), we have

α
′
(y) = βl1(y)−1 hα(y)βl0(y), y ∈ MG,
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for some (β, h) ∈ Der(FG, (A,µ)).
This implies

gα
′
(g−1

y) = gβl1(g−1
y)−1 ghα(g−1

y) gβl0(g−1
y), y ∈ MG.

Hence ˜α′(y) = gβ(g−1
l1(y))−1 ghg−1

α̃(g−1
y) gβ(g−1

l0(y)) with (˜β,g h) ∈
Der(FG, (A,µ)). Therefore (˜α1, 1) ∼ (α̃, 1). It is obvious that the above-
defined map ϑ

′
: H2(G, ker µ) −→ H2(G, A) is a G-map. Since ϑ

′
is surjec-

tive (see Proposition 11) and Z(G) acts trivially on H2(G, kerµ), it follows
that Z(G) acts trivially on H2(G, A) too.

4. An Exact Cohomology Sequence

For any G-group A denote by H0(G,A) a subgroup of A consisting of all
invariant elements under the action of G on A.

Theorem 13. Let

1 −→ (A, 1)
ϕ−→ (B, µ)

ψ−→ (C, λ) −→ 1 (6)

be an exact sequence of crossed G-modules. Then there is an exact sequence

1 −→ H0(G, A)
ϕ0

−→ H0(G,B)
ψ0

−→ H0(G,C) δ0

−→ H1(G,A)
ϕ1

−→
ϕ1

−→ H1(G,B)
ψ1

−→ H1(G,C) δ1

−→ H2(G,A)
ϕ2

−→ H2(G, B)
ψ2

−→ H2(G,C)

where ϕ0, ψ0, δ0, ϕ1, ψ1 are group homomorphisms, δ1 is a crossed homo-
morphism under the action of H1(G,C) on H2(G,A) induced by the action
of G on A, and ϕ2, ψ2 are maps of pointed G-sets.

Proof. The exactness of

1 −→ H0(G,A)
ϕ0

−→ H0(G, B)
ψ0

−→ H0(G,C) δ0

−→ H1(G,A)
ϕ1

−→
ϕ1

−→ H1(G,B)
ψ1

−→ H1(G,C) δ1

−→ H2(G,A)

is proved in [4].
We have only to show the exactness of

H1(G,C) δ1

−→ H2(G, A)
ϕ2

−→ H2(G,B)
ψ2

−→ H2(G,C).

Let [(α, g)] ∈ H1(G,C) and δ1[(α, g)] = [γ]. Then one has a commutative
diagram

M
l0
−→−→
l1

F τ−→ G

↓ γ ↓ β ↓ α

A
ϕ−→ B

ψ−→ C
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where ϕγ(y) = βl1(y)−1βl0(y), y ∈ M , and β is a crossed homomorphism,
B being an F -group via τ . The existence of such β follows from the following
assertion: if we have a surjective homomorphism ψ : B −→ C of F -groups
and f : F −→ C is a crossed homomorphism where F is a free group, then
there is a crossed homomorphism β : F −→ B such that ψβ = f . In effect,
take the semi-direct product B ./ F and consider a subgroup Y of B ./ F
consisting of all elements (b, x) such that ψ(b) = f(x). Then we have a
commutative diagram

Y
pr2−→ F

↓ pr1 ↓ f

B
ψ−→ C

where pri is the projection, i = 1, 2, and pr2 is surjective. Thus, since F is
a free group, there is a homomorphism f ′ : F −→ Y such that ff ′ = 1F .
Then pr1f ′ is the required crossed homomorphism.

It will be shown that (β, g) ∈ Der(F, (B,µ)). One has

gτ(x)g−1τ(x)−1 = λατ(x) = λψβ(x) = µβ(x), x ∈ F.

This means (β, g) ∈ Der(F, (B, µ)). It is clear that ϕ2δ1([α, g]) = ϕ2([γ]) =
[(ϕγ, 1)] and (ϕγ, 1) ∼ (α0, 1) (use (β, g) ∈ Der(F, (B, µ))), where α0(x) = 1
for all x ∈ F . Therefore Im δ1 ⊂ ker ϕ2.

Let [γ] ∈ H2(G,A) such that ϕ2([γ]) = [(ϕγ, 1)] = [(α0, 1)]. Then there
exists (β, h) ∈ Der(F, (B, µ)) such that

ϕγ(y) = βl1(y)−1 · βl0(y), y ∈ M,

whence ψβl0(y) = ψβl1(y), y ∈ M . It follows that there is a crossed
homomorphism α : G −→ C such that ατ = ψβ. We have to show (α, h) ∈
DerG(G, C). In effect, h τ(x) h−1 τ(x)−1 = µβ(x) = λψβ(x) = λατ(x),
x ∈ F . This implies (α, h) ∈ DerG(G,C). It is clear that δ1([α, h]) = [γ].
Therefore, ker ϕ2 ⊂ Im δ1.

It is obvious that Im ϕ2 ⊂ kerψ2.
Let [(α, 1)] ∈ H2(G,B) such that ψ2([α, 1]) = [(ψα, 1)] = [(α0, 1)]. Then

there exists (β, h) ∈ Der(F, (C, λ)) such that

ψα(y) = βl1(y)−1βl0(y), y ∈ M.

It follows that there is a crossed homomorphism β
′
: F −→ B such that

ψβ
′
= β. One gets the following commutative diagram:

M
l0
−→−→
l1

F τ−→ G

↘ α ↓ β
′ ↘ β

A
ϕ−→ B

ψ−→ C

.
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Thus, ψα(y)=ψβ
′
l1(y)−1 ψβ

′
l0(y), y∈M , so that ψ(β

′
l1(y)α(y)β

′
l0(y)−1)

= 1, y ∈ M . One gets β
′
l1(y)α(y)β

′
l0(y)−1 ∈ ϕ(A), y ∈ M . Denote by

γ : M −→ A the crossed homomorphism given by γ(y) = ϕ−1(β
′
l1(y)α(y)β′

l0(y)−1). Then h−1
γ(y) = ϕ−1(h−1

β
′
l1(y)h−1

α(y) ·h−1
β
′
l0(y)−1), y ∈ M .

In the group Der(F, (B, µ)) consider the product

(β
′
l0, h)−1(α, 1)(β

′
l1, h) = (η, 1)

where η(y) = h−1
β
′
l1(y) h−1

α(y) h−1
β
′
l0(y)−1, y ∈ M .

This implies that the map given by

y 7−→h−1
γ(y), y ∈ M,

is a crossed homomorphism.
Take [ϕ−1η] ∈ H2(G,A). Then we have ϕ2([ϕ−1η]) = [(η, 1)]. But

(η, 1) ∼ (α, 1) by the above equality with (β
′
, h)−1 ∈ Der(F, (B,µ)). There-

fore, ker ψ2 ⊂ Imϕ2.

Any crossed G-module (A,µ) induces the following short exact sequence
of crossed G-modules:

1 −→ (ker µ, 1)
ϕ−→ (A,µ)

ψ−→ (Im µ, σ) −→ 1

where σ : Im µ −→ G denotes the inclusion and G acts on Im µ by conjuga-
tion.

Corollary 14. If (A, µ) is a crossed G-module there is an exact sequence

1 −→ H0(G, ker µ)
ϕ0

−→ H0(G, A)
ψ0

−→ H0(G, Im µ) δ0

−→ H1(G, kerµ)
ϕ1

−→
ϕ1

−→ H1(G,A)
ψ1

−→ H1(G, Im µ) δ1

−→ H2(G, ker µ) ϑ
′

−→ H2(G,A)
−→ 1.

For the exact sequence (6) a connecting map

δ2 : H2(G,C) −→ H3(G,A)

will be defined, and for this we will use the equivalence of functors
Hn+1(−, A) ≈ Ln Der(−, A), n ≥ 1 [9] when A is a Z[G]-module, where
Ln Der(−, A) is the non-abelian nth derived functor of the contravariant
functor Der(−, A) from the category DG of groups acting on A to the cat-
egory of abelian groups.

Consider the following canonical free simplicial resolution of G in the
category DG:

−→
...
−→

F3
τ3−→ M2

l20−→
...
−→
l2
3

F2
τ2−→ M1

l10−→−→
−→
l1
2

F1
τ1−→ M0

l00
−→−→
l01

F0
τ0−→ G (7)
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where F0 = FG, Fi = FMi−1 , i ≥ 1, τi is the canonical homomorphism, and
(Mi, li0, . . . , l

i
i+1) is the simplicial kernel of (li−1

0 τi, . . . , li−1
i τi), i ≥ 0 (see

[10]).
There is an action of Der(F0, (C, λ)) on H3(G,A) defined as follows.
Let [f ] ∈ H3(G,A), where f : F2 −→ A is a crossed homomorphism such

that
3
∏

i=0
(fl1i τ3)ε = 1, where ε = (−1)i, and let (α, g) ∈ Der(F0, (C, λ)).

Define
(α,g)[f ] = [gf ].

We have first to show that gf is a crossed homomorphism.
In the group Der(F2, (B, µ)) ( (B,µ) being a crossed F2-G-bimodule in-

duced by τ0∂1
0∂2

0 where ∂1
0 = l00τ1, ∂2

0 = l10τ2) take the product

(β∂1
0∂2

0 , g)(ϕf, 1)(β∂1
0∂2

0 , g)−1 = ( ˜f, 1),

where ˜f is a crossed homomorphism and β : F0 −→ B is a crossed homo-
morphism too such that ψβ = α (such β exists, since F0 is a free group and
ψ is surjective).

One has

˜f(x) = β∂1
0∂2

0(x)−1gϕf(x)β∂1
0∂2

0(x) =g ϕf(x), x ∈ F2.

We show now the correctness. If f ∼ f ′ then there is a crossed homo-
morphism η : F1 −→ A such that

f ′(x) = f(x)
2

∏

i=0

(ηl1i τ2(x))ε, x ∈ F2,

where ε = (−1)i. It can be shown in the same manner as for f that gη is a
crossed homomorphism if (α, g) ∈ Der(F0, (C, λ)).

Thus one gets

gf ′ = gf
2

∏

i=0

g(ηl1i τ2)ε,

where ε = (−1)i. This implies

[gf ′] = [gf ].

Therefore the action of Der(F0, (C, λ)) on H3(G,A) is correctly defined.
Let (α, 1) ∈ ˜Der(M0, (C, λ)) and let β : F1 −→ B be a crossed homo-

morphism (F1 acts on B via τ0l00τ1 = τ0l10τ1) such that ψβ = ατ1. Then

we have β(F1) ⊂ Z(B) and define a crossed homomorphism β =
2
∏

i=0
(βl1i )

ε :
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M1 −→ B, ε = (−1)i. Hence ψβ(y) =
2
∏

i=0
ψβl1i (y)ε =

2
∏

i=0
ατ1l1i (y)ε, y ∈ M1,

ε = (−1)i.
It is easy to see that

τ1l10(y)τ1l11(y)−1τ1l12(y) ∈ ∆, y ∈ M1.

Since α(∆) = 1, there is a crossed homomorphism γ : F2 −→ A such that
ϕγ = βτ2.

Theorem 15. Let (6) be an exact sequence of crossed G-modules. If
either the action of Der(F0, (C, λ)) on H3(G,A) is trivial (in particular, if
G acts trivially on A) or Der(F0, (C, λ)) = I Der(F0, (C, λ)) (in particular,
if either λ = 1 or G is abelian) then the connecting map δ2 : H2(G,C) −→
H3(G,A) is defined by

δ2([α, 1]) = [γ], (α, 1) ∈ ˜Der(M0, (C, λ)),

and the sequence

H2(G,B)
ψ2

−→ H2(G,C) δ2

−→ H3(G,A)

is exact.

Proof. We have to show that δ2 is correctly defined.
Let Der(F0, (C, λ)) act trivially on H3(G, A). If (α′, 1) ∈ [(α, 1)] ∈

H2(G,A), we have

α′(x) = ηl01(x)−1gα(x)ηl00(x), x ∈ F0,

with (η, g) ∈ Der(F0, (C, λ)).
Take a crossed homomorphism η′ : F0 → B such that ψη′ = η. Recall

that ψβ = ατ1. Consider the product

(η′l00τ1, g)(β, 1)(η′l01τ1, g)−1 = (β′, 1)

in the group Der(F1, (B, µ)). Then

β′(x) = η′l01τ1(x)−1gβ(x)η′l00τ1(x), x ∈ F1.

Thus ψβ′ = α′τ1 and β′(F1) ⊂ Z(B). Note that this implies η′l01(x)−1 η′L0
0(x) ∈

Z(B) for all z ∈ M0.
Further,

β′(l10(y))β′(l11(y)−1)β′(l12(y)) = gβ(l10(y))η′l01(l
1
0(y))−1η′l00(l

1
0(y))

gβ(l11(y))−1η′l01(l
1
1(y)−1)−1η′l00(l

1
1(y)−1gβ(l12(y))η′l01(l

1
2(y))−1

η′l00(l
1
2(y)) = gβ(y).

Therefore β′τ2 = g(βτ2) and [γ′] = [gγ] = [γ].
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If Der(F0, (C, λ)) = I Der(F0(C, λ)) and α′, 1) ∼ (α, 1) then there is an
element (η, g) ∈ Der(F0, (C, λ)) such that

α′(x) = ηl01(x)−1α(x)ηl00(x), x ∈ F0,

(see the proof of Proposition 10 (ii)) and it is clear that in both cases δ2 is
correctly defined.

We will now prove the exactness. Let [(α, 1)] ∈ H2(G, B). Then
δ2ψ2[(α, 1)] = δ2([(ψα, 1)]) = [γ], where ϕγ = βτ2 and β is taken such
that β = ατ1. Thus

β(y) = ατ1l10(y)ατ1l11(y)−1ατ1l12(y), y ∈ M1.

Since τ1L1
0(y) τ1L1

1(y)−1 τ1L1
2(y) ∈ ∆, y ∈ M1 and α(∆) = 1, this implies

β = 1. Thus we have Im ψ2 ⊂ ker δ2.
Let [(α, 1)] ∈ H2(G,C) such that δ2([(α, 1)]) = 1. Then we have [γ] = 1

with ϕγ = βτ2, where β : M+1 → B is a crossed homomorphism such that
β = βl10(βl11)

−1βl12 with ψβ = ατ1 and β : F1 → B a crossed homomor-
phism.

It follows that there exists a crossed homomorphism η : F1 → A such
that γ = (ηl10(ηl11)

−1ηl12)τ2.
Thus we have βτ2 = ϕ(ηl10(ηl11)

−1ηl12)τ2, whence β(y) = ϕηl10(y)ϕηl11(y)−1

ϕηl12, y ∈ M1.
For y1, y2 ∈ F1 such that τ1(y1) = τ1(y2) = x, since (y1, y2, s0

0l
0
1(x)) ∈

M1, one gets β(y1)β(y2)−1βs0
0l

0
1(x) = ϕη(y1)ϕη(y2)−1ϕη(s0

0l
0
1(x)), where

s0
0 : F0 → F1 is the degeneracy map. In particular, if y1 = y2 we have

β(s0
0l

0
1(x)) = ϕη(s0

0l
0
1(x)), x ∈ M0.

Therefore β(y1)ϕη(y1)−1 = β(y2)ϕη(y2)−1 if τ1(y1) = τ1(y2).
This implies a crossed homomorphism β′ : M0 → B given by

β′(x) = β(y)ϕη(y)−1, x ∈ M0,

where τ1(y) = x. Thus β′τ1 = β and β′(M0) ⊂ Z(B). If x ∈ ∆ ⊂ M0 then
τ1s0

0l
0
1(x) = x. Therefore we have

β′(x) = β(s0
0l

0
1(x)) = ϕη(s0

0l
0
1(x))−1, x ∈ ∆.

Whence β′(x) = 1 if x ∈ ∆.
On the other hand,

µβ′(x)µβ(y)µϕη(y)−1 = µβ(y) = λψβ(y) = λατ1(y) = 1.

We conclude that (β′, 1) ∈ ˜Z1(M0, (B, µ)) and it is clear that ψ2([(β′, 1)])
= [(α, 1)].
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