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ON ITO–NISIO TYPE THEOREMS FOR DS-GROUPS

V. TARIELADZE

Abstract. It is shown that the convergence of convolution products
of probability measures on certain non-locally compact topological
abelian groups can be verified by means of characteristic function-
als. Analogous results are obtained also for almost everywhere con-
vergence of series of independent random elements in the considered
groups. A connection with the Sazonov property of the groups is
discussed.

1. Preliminaries. Throughout the paper N denotes the set of natu-
ral numbers; Q,R, and C are, respectively, the fields of rational, real, and
complex numbers with the ordinary (Euclidean) metric, and T denotes the
multiplicative group of complex numbers of modulus 1 with the metric in-
duced from C.

For a topological abelian group X we denote by X ′ the topological dual
group which consists of all continuous (unitary) characters h : X → T; the
group operation in X ′ is the natural pointwise multiplication. No topology
in X ′ is specified.

A topological abelian group X is called dually separated or DS-group if
X ′ separates the points of X; in other words, X is a DS-group if for any
different x1, x2 ∈ X there is a character h ∈ X ′ such that h(x1) 6= h(x2).
Hausdorff locally compact abelian (LCA-) groups and any additive subgroup
of any Hausdorff locally convex space are examples of DS-groups. Below we
shall see another type of examples too.

Let X be a completely regular Hausdorff topological space. Denote by
Mt(X) the set of all Radon probability measures µ defined on the Borel
σ-algebra of X. In Mt(X) we consider only the weak topology (for all
the notions unexplained here the reader is referred to [1] and [2]). For
fixed x ∈ X we denote by δx the Dirac measure concentrated at x. The
Prokhorov theorem says that a subset M ⊂Mt(X) is relatively compact if
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it is tight, i.e., for any ε > 0 there is a compact subset K ⊂ X such that
µ(K) ≥ 1− ε for all µ ∈ M ; tightness is also a necessary condition for the
relative compactness of M in the following important cases: X is locally
compact (see, e.g., [1]), X is completely metrizable [2, Theorem 1.3.6], X is
metrizable, and M is compact and countable (L.LeCam, see [3, Proposition
6]). A sequence of Radon probability measures is called tight if its range is
tight. In general, a sequence, convergent in Mt(X), may not be tight.

Let (X, +) be a Hausdorff topological group. For µ1, µ2 ∈ Mt(X) we
denote by µ1 ∗ µ2 their convolution. (Mt(X), ∗) is a Hausdorff topological
semigroup with the neutral element δθ, where θ is the neutral element of X.
If P is a property concerning a sequence (µn)n∈N in Mt(X), then we say
that (µn) has shift-P if there is a sequence (xn) in X such that the sequence
(δxn ∗ µn) has P . As a rule, the tightness or convergence plays the role of
P . For µ ∈Mt(X) we denote by µ̃ the image of µ under the map x → −x;
µ is called symmetric if µ = µ̃. A measure µ ∈Mt(X) is called symmetrized
if µ = ν ∗ ν̃ for some ν ∈ Mt(X). If X is abelian then any symmetrized
measure is symmetric. If x ∈ X then δx is symmetric iff x has the second
order, i.e., 2x := x + x = θ; δx is symmetrized iff x = θ. Let (µn) and (µ′m)
be sequences of Radon probability measures on X. We shall frequently use
the following well-known assertions (see, e.g., [4] or [2]) :

If (µn) and (µ′n) are tight then (µn ∗ µ′n) is tight.
If (µn) and (µn ∗ µ′n) are tight then (µ′n) is tight.
If (µn ∗ µ′n) is tight then (µ′n) is shift-tight.
A Radon probability measure µ on a Hausdorff topological group X is

called idempotent if µ ∗ µ = µ. Idempotent measures are explicitly the nor-
malized Haar measures of compact subgroups of X [5]. For µ, ν ∈ Mt(X)
we say that ν is a factor of µ and write ν ≺ µ if ν ∗ ν′ = µ for some
ν′ ∈ Mt(X). A measure µ ∈ Mt(X) is called idempotent-free if δθ is the
only idempotent factor of µ. The group X is called aperiodic [6] if {θ} is the
unique compact subgroup of X. It follows that X is aperiodic iff δθ is the
unique idempotent measure in Mt(X). Additive subgroups of a Hausdorff
topological vector space over Q are typical examples of aperiodic topological
groups.

Lemma 1. Let (X,+) be a Hausdorff topological abelian group, µ ∈
Mt(X) be a symmetric measure, and x ∈ X be an element such that µ ∗ δx

is again symmetric. Then:
(a) µ ∗ δ2x = µ;
(b) if µ is idempotent-free then 2x = θ;
(c) if X is aperiodic then x = θ.

Proof. (a). Since µ and µ ∗ δx are both symmetric measures, we have

µ ∗ δ−x = µ̃ ∗ ˜δx = µ̃ ∗ δx = µ ∗ δx.
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This equality implies (a).
(b). Consider the set

H = {y ∈ X : µ ∗ δy = µ}.

It is easy to see that H is a compact subgroup of X and if ν is the normalized
Haar measure of H then µ ∗ ν = µ. In particular, ν ≺ µ and so, by
assumption, ν = δθ, i.e., H = {θ}. But according to (a), 2x ∈ H, i.e.,
2x = θ.

(c). Since X is aperiodic, µ is idempotent-free and according to (b)
2x = θ. This implies that {θ, x} is a compact subgroup of X. Using again
the aperiodicity of X, we obtain x = θ.

Remark. It is easy to see that Lemma 1 is not valid for nonabelian groups.
In the sequel we need one more notion. A Hausdorff topological group

(X, +) is called wide sense-root compact (ws-root compact) if for any se-
quence (xn) in X, for which the set {2xn : n ∈ N} is relatively compact in
X, the set {xn : n ∈ N} itself is relatively compact in X. A related notion of
the 2-root compact group is considered in [6]. It is clear that any (additive)
subgroup of a Hausdorff topological vector space over Q is ws-root compact.
Also, any strong Corwin group X (i.e., the group X having the property
that the map x → 2x is a homeomorphism) is ws-root compact. Not every
LCA-group is ws-root compact. Any aperiodic LCA-group is ws-root com-
pact, since any of such groups is, in fact, a subgroup of a finite-dimensional
vector space over R (see [6]). We do not know whether this is so in general.

Below, if (X, +) is a group then u : X → X denotes the map defined by
the equality ux = 2x for all x ∈ X.

Lemma 2. Let (µn) be a sequence of symmetric Radon probability mea-
sures on a Hausdorff topological abelian group X and (xn) be a sequence in
X such that the sequence (µn ∗ δxn) is tight.

Then:
(a) the set {2xn : n ∈ N} is relatively compact in X;
(b) the sequence (µn ◦ u−1) is tight;
(c) if either µn, n ∈ N, are symmetrized measures or X is ws-root com-

pact, then (µn) itself is tight.

Proof.
(a). Clearly, the sequence (µn ∗ µn ∗ δ2xn) is also tight. The symmetry

easily implies that the sequence (µn∗µn) is tight too. The tightness of these
two sequences gives that (δ2xn) is a tight sequence and this is equivalent to
(a).

(b) immediately follows from the assumption and (a).
(c). First, let our measures be symmetrized, i.e., we have (µn) = (βn∗˜βn),

where (βn) is a sequence of Radon probability measures on X. So, by
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assumption, (βn ∗ ˜βn ∗ δxn) is tight. Consequently, (βn) is shift-tight and
this easily implies that (µn) is tight. Now if X is ws-root compact, then
(a) implies that (δ−xn) is tight. This and the assumption imply that (µn)
is tight.

Let X be a DS-group and µ be a Radon probability measure on X.
The Fourier transform or the characreristic functional of µ is the functional
µ̂ : X ′ → C defined by the equality

µ̂(h) =
∫

X

h(x)dµ(x), h ∈ X ′.

The characteristic functional uniquely defines the measure. More precisely,
the following version of the uniqueness theorem is valid: if µ1, µ2 ∈Mt(X)
and the set {h ∈ X ′ : µ̂1(h) = µ̂2(h)} contains a separating subgroup of X ′,
then µ1 = µ2 [7, p. 629]. It is easy to see that if µ, ν, µ1, µ2 ∈Mt(X), then
the following assertions hold:

µ = µ1 ∗ µ2 iff µ̂ = µ̂1µ̂2;
µ = ν̃ iff µ̂ = ¯̂ν, where the bar means complex conjugation;
µ is symmetric iff µ̂ is a real-valued functional;
µ is an idempotent measure iff µ̂(h) ∈ {0, 1},∀h ∈ X ′;
µ = δx for some x ∈ X iff |µ̂| = 1, where |.| means modulus.

Let (Y, .) be a multiplicative group with neutral element 1. A functional
χ : Y → C is called positive definite if the inequality

n
∑

k,j=1

ck c̄jχ(yk.y−1
j ) ≥ 0

holds for any n ∈ N, c1, ..., cn ∈ C, and y1, ..., yn ∈ Y . Positive definite χ is
called normalized if χ(1) = 1.

It is easy to see that if X is a DS-group and χ : X ′ → C is a charac-
teristic functional of a Radon probability measure on X, then it is positive
definite, normalized, and continuous on X ′ in the topology comp(X ′, X) of
uniform convergence on compact subsets of X. When X is a LCA-group,
the Bochner(–Weyl–Raikov) theorem says that the converse assertion is also
valid. In general, the Bochner theorem fails, but if instead of comp(X ′, X)
one uses a different topology, its analogue remains valid for certain non-
locally compact DS-groups; see Section 4 for more information. We shall
use the following assertion, which, in fact, says that a positive definite quo-
tient of two arbitrary characreristic functionals is always a characteristic
functional.

Proposition 1. Let X be a DS-group, Γ ⊂ X ′ be a subgroup, and χ :
X ′ → C be a positive definite normalized functional. Let us also assume
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that there are Radon probability measures µ and µ1 on X such that

µ̂1(h)χ(h) = µ̂(h), h ∈ Γ.

Then there is a Radon probability measure β on X such that

̂β(h) = χ(h) ∀h ∈ Γ.

Moreover, if Γ is separating, then the measure β is unique and µ1∗β = µ.

Proof. Consider in Γ the discrete topology and denote

G = (Γ′, comp(Γ′, Γ)).

Then G is a compact abelian group. Let b : X → G be the canonical
embedding and let ν, respectively, ν1, be the image of µ, respectively, µ1,
under b. According to the Pontrjagin duality theorem Γ is identified with
(G′, comp(G′, G)) and we can write ν̂1χ = ν̂. By the Bochner theorem there
is γ ∈Mt(G) such that γ̂ = χ. Evidently, ν1 ∗ γ = ν. This equality and the
assumption that µ and µ1 are Radon probability measures on X, imply that
for a sequence (Kn)n∈N of compact subsets of X we have γ(

⋃

n b(Kn)) = 1.
This equality implies that there is a Radon probability measure β on X
such that γ is the image of β under b (see [1, p. 39]). Clearly, we have
̂β(h) = χ(h) for all h ∈ Γ. The rest of the proposition follows immediately
from the uniqueness theorem.

Remark. A similar result for Γ = X ′ is formulated in [7, p. 642], but in
its proof there an incorrect proposition from [7, p. 635] is used.

Lemma 3. Let X be a DS-group and µ ∈Mt(X). Denote

U(µ̂) = {h ∈ X ′ : µ̂(h) 6= 0}.

The following assertions are equivalent:

(i) µ is idempotent-free;
(ii) U(µ̂) generates algebraically X ′;
(iii) U(µ̂) separates the points of X.

Proof. (i)=⇒(ii). Suppose (i) is not valid. Let T be the topology of conver-
gence in measure µ in X ′. Then Y = (X ′, T ) is a topological abelian group
and U(µ̂) is an open neighbourhood of 1 in Y . Also, let H be the subgroup
generated by U(µ̂). Then H is an open subgroup of Y and H 6= Y . This
implies that there is a character χ : Y → T such that χ 6= 1 and χ(h) = 1
for all h ∈ H. Clearly, we have µ̂χ = µ̂. Since χ is positive definite, by
Proposition 1 this equality implies that there is β ∈ Mt(X) with ̂β = χ.
Since |χ| = 1, there is x ∈ X such that β = δx. Therefore for this x we have
µ ∗ δx = µ. Since x 6= 0, from the later equality we derive, as in the proof
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of Lemma 1, that µ has an idempotent factor which is different from δθ. A
contradiction.

(ii)=⇒(iii) is evident.
(iii)=⇒(i). Let ν ∈Mt(X) be an idempotent factor of µ. Evidently,

U(µ̂) ⊂ U(ν̂) = {h ∈ X ′ : ν̂(h) = 1}.

This and (iii) imply that U(ν̂) is a separating subgroup of X ′. By the
uniqueness theorem ν = δθ.

Corollary. Let X be a DS-group and µ, νn, n ∈ N be Radon probabiliry
measures on X. Suppose that

µ̂(h) =
∏

n

ν̂n(h) := lim
n

n
∏

k=1

ν̂k(h) ∀h ∈ X ′

and U(µ̂) separates the points of X (i.e., µ is idempotent-free). Then the
following Cauchy condition is satisfied:

lim
n,m

n+m
∏

k=n+1

ν̂k(h) = 1 ∀h ∈ X ′.

Proof. Consider the set

H =
{

h ∈ X ′ : lim
n,m

n+m
∏

k=n+1

ν̂k(h) = 1
}

.

It is easy to see that H is a subgroup of X ′ and U(µ̂) ⊂ H. Now by the
implication (iii)=⇒(ii) of the lemma we obtain H = X ′.

We shall also make use of

Proposition 2. Let X be a DS-group and (µα)α∈A be a net with a rela-
tively compact range in Mt(X) and let the set {h ∈ X ′ : limα µ̂α(h) exists}
contain a separating subgroup of X ′. Then (µα)α∈A converges in Mt(X).

The proof employs the uniqueness theorem and proceeds as the proof of
Theorem 4.3.1 in [2].

This proposition shows that the characteristic functionals can be used
for establishing the convergence of relatively compact nets. Much more can
be said in the case of LCA-groups. Namely, P. Levy’s theorem says that if
µ, µn, n ∈ N are Radon probability measures on a LCA-group X and

lim
n

µ̂n(h) = µ̂(h) ∀h ∈ X ′,

then
lim
n

µn = µ.
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An analogous assertion remains also valid if X is a nuclear locally convex
space [8]. But if X is an infinite-dimensional normed space over R, then
P. Levy’s theorem is false (see, e.g., [2, Proposition 1.3.2]. Nevertheless, as
shown in [9] (see also [2, Corollary 1 of Theorem 5.2.4]), if X is a Banach
space over R and µn = ν1 ∗ ... ∗ νn, n ∈ N, where νn, n ∈ N are symmetric
Radon probability measures on X, then the conclusion of P. Levy’s theorem
remains valid. In the next section we shall present the analogues of this
remarkable result for general DS-groups. The results are obtained as a rule
without the assumptions of metrizability, completeness, and separability. In
the third section these results are applied to the study of almost everywhere
convergence of series of independent random elements in metrizable DS-
groups. From this point of view our approach differs from that of [2, 9,
10].

2. Convergence of Convolution Products. In this section we shall
use the following notation. (X, +) denotes a Hausdorff topological abelian
group with a neutral element θ; (νn)n∈N denotes an arbitrary sequence of
Radon probability measures on X,

µn := ν1 ∗ · · · ∗ νn ∀n ∈ N.

Recall also that u : X → X is the mapping defined by the equality ux =
2x := x + x.

The first two assertions of the following theorem are known.

Theorem 1. Suppose that the sequence (µn) is tight and µ ∈Mt(X) is
its limit point.

Then:
(a) µn ≺ µ for all n and any limit point of (µn) has the form δx ∗ µ for

some x ∈ X;
(b) if X is metrizable, then (µn) is shift-convergent to µ;
(c) if νn, n ∈ N are symmetrized measures, then limn µn = µ;
(d) limn µn ∗ µ̃n = µ ∗ µ̃; in particular, if νn, n ∈ N are symmetric

measures, then limn µn ∗ µn = µ ∗ µ.
(e) if νn, n ∈ N are symmetric measures and µ is idempotent-free, then

limn µn ◦ u−1 = µ ◦ u−1;
(f) if νn, n ∈ N are symmetric measures, µ is idempotent-free, and X

contains no second-order elements, then limn µn = µ;
(g) if νn, n ∈ N are symmetric measures and X is aperiodic, then

limn µn = µ.

Proof. (a) is a particular case of a more general assertion of [11, p. 38].
(b) follows from (a) and the metrizability of X; see, e.g., [4, p. 71], or [12,
p. 347].
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(c). We have νn = αn ∗ α̃n, where αn ∈ Mt(X) for all n ∈ N. Denote
βn = α1∗· · ·∗αn; then µn = βn∗ ˜βn for all n ∈ N. This equality implies that
(βn) is shift-tight, i.e., for a sequence (xn) in X, the sequence (βn ∗ δxn) is
tight. Now, since any limit point of (µn) has the form β∗˜β, where β is a limit
point of (βn ∗ δxn), the application of (a) to the sequence (αn ∗ δ(xn−xn−1)),
where x0 := θ, gives that (µn) has only one limit point.

(d) is a particular case of (c); also, (d) follows directly from (a).
(e). Clearly, the range of the sequence (µn ◦ u−1) is relatively compact

and any of its limit point has the form β ◦ u−1, where β is a limit point
of (µn). Now the assumptions, Lemma 1(b), and (a) easily imply that
β ◦ u−1 = µ ◦ u−1, i.e., µ ◦ u−1 is the only limit point of (µn).

(f) follows from the assumptions, Lemma 1(b), and (a).
(g) follows from the assumptions and (f).

Remark 1. A more general version of the second part of Theorem 1(a)
even without the assumption of tightness is obtained in [11, p. 38].

Remark 2. For separable Banach spaces Theorem 1(g) was proved in [9]
(see also [2, Corollary 2 of Theorem 5.2.3]).

Remark 3.
(1) If µ is not idempotent-free, then Theorem 1(e) is not valid: put

X := T, νn := 1
2 (δi + δ(−i)) for all n, where i2 = −1; in this case we

shall have that (µn ◦ u−1)n∈N has two limit points δ1 and δ(−1), i.e., is not
convergent.

(2) Theorem 1(g) is not valid without the assumption of aperiodicity of
X. Example: let X be the multiplicative group {−1, 1} and νn := δ(−1) for
all n.

Theorem 1′. Suppose that the sequence (µn) is shift-tight, i.e., for a
sequence (xn) in X the sequence (µn ∗ δxn) is tight and µ ∈ Mt(X) is its
limit point.

Then:
(a) µn ∗ δxn ≺ µ for all n and any limit point of (µn ∗ δxn) has the form

δx ∗ µ for some x ∈ X;
(b) if X is metrizable, then (µn) is shift-convergent to µ;
(c) if νn, n ∈ N, are symmetrized measures, then (µn) is tight and con-

vergent in Mt(X);
(d) the sequence µn ∗ µ̃n is tight and limn µn ∗ µ̃n = µ ∗ µ̃; in particular,

if νn, n ∈ N, are symmetric measures, then limn µn ∗ µn = µ ∗ µ;
(e) if νn, n ∈ N, are symmetric measures, then the sequence (µn ◦u−1) is

tight.
Assume, in addition, that X is ws-root compact and νn, n ∈ N are sym-

metric measures. Then the following assertions are also valid:
(f) (µn) is tight;
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(g) if µ is idempotent-free, then (µn ◦ u−1) is convergent in Mt(X);
(h) if µ is idempotent-free and X contains no second-order elements, then

(µn) is tight and convergent in Mt(X);
(i) if X is aperiodic, then (µn) is tight and convergent to in Mt(X).

Proof. The assertions (a) and (b) are particular cases of the corresponding
assertions of Theorem 1.

(c). Evidently, µn, n ∈ N, are also symmetrized measures. So by Lemma
2(c) the sequence (µn) is tight. It remains to apply Theorem 1(c).

(d). Since the sequence (µn∗ µ̃n) is tight and µn∗ µ̃n = ν1∗ ν̃n∗ ...∗νn∗ ν̃n

for all n, we can again apply Theorem 1(c).
(e) follows from Lemma 2(b).
(f) follows from Lemma 2(c).
(g). According to (f) the sequence (µn) is tight. Let µ′ be its limit point.

It is easy to see that for some z ∈ X the measure µ′ ∗ δz is a limit point
of the sequence (µn ∗ δxn). This and (a) imply that µ′ is idempotent-free,
since µ is idempotent-free by the supposition. Consequently Theorem 1 (e)
is applicable.

(h) follows in the same manner from (f) and Theorem 1(f).
(i) follows from Lemma 2(c) and Theorem 1(g).

Lemma 4. Suppose that there is a compact subset K of X such that

lim sup
n

µn(K) > 0.

Then the sequence (µn) is shift-tight.

Proof. Our assumption evidently implies that the sequence (µn) is increas-
ing (i.e., µn ≺ µn+1 for all n ) and not dispersing in the sense of [12], and
thus Lemma 4 is a particular case of Lemma 6.3 from [12, p. 343].

To formulate a refinement of Theorem 1(g) let us recall first that a Haus-
dorff topological space is called a Suslin space if it is a continuous surjective
image of a complete separable metric space.

Proposition 3. Let X be a Suslin group, and T a Hausdorff group topol-
ogy in X which is weaker than the initial topology TX of X. Suppose that
there is a subset K ⊂ X which is compact in topology T and for which

lim sup
n

µn(K) > 0.

Then:
(a) (µn) is shift-tight (with respect to TX-compacts);
(b) if either νn, n ∈ N, are symmetrized measures or X is a ws-root

compact aperiodic topological group and νn, n ∈ N, are symmetric measures,
then (µn) is tight and convergent in Mt(X).
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Proof. Denote Y = (X, T ). Then, according to Lemma 4, (µn) is shift-
tight with respect to T -compact subsets of X, i.e., for a sequence (xn) the
sequence (µn ∗ δxn) is T -tight. So, by Prokhorov’s theorem, {µn ∗ δxn :
n ∈ N} is relatively compact in Mt(Y ). Let µ ∈ Mt(Y ) be a limit point
of (µn ∗ δxn) in the topology of Mt(Y ). Theorem 1(a) implies that for all
n ∈ N there is a measure µ′n ∈Mt(Y ) such that µn ∗µ′n = µ. Now, since X
is a Suslin space, the Borel σ-algebras of X and of Y are the same (see [1,
p. 101]) and any Radon probability measure on Y is also a Radon measure
on X (see [1, p. 124]). So we have that µ, µ′n, n ∈ N, are Radon probability
measures on X and the equality µn ∗ µn

′ = µ also holds in Mt(X) for all
n. The last equality implies (a), since the one-element set {µ} is tight.

(b) follows from (a) according to Theorem 1′(c,i).

Remark 1. The assumption of ws-root compactness is essential for Propo-
sition 3(b). This follows from Proposition 4(f) below.

Remark 2. Proposition 3(b) is an essential refinement of Theorem 3.4.4
from [8, p. 107], where the case of a complete separable metrizable topo-
logical vector space X with a separating dual space is considered and it
is required that T be a vector topology in X such that the space (X, T )
should also have a separating dual space.

Now we proceed to the study of convergence of convolution products by
using characteristic functionals.

Theorem 2. Let X be a DS-group. The following assertions are equiv-
alent:

(i) the sequence (µn ∗ µ̃n) is convergent in Mt(X);
(ii) there is a Radon probability measure ρ on X such that the set

{h ∈ X ′ : lim
n
|µ̂n(h)|2 = ρ̂(h)}

contains a separating subgroup Γ of X ′;
(iii) the sequence (µn) is shift-tight.

Proof. The implication (i)=⇒(ii) is evident. (iii) implies (i) according to
Theorem 1′(d). It remains to prove (ii)=⇒(iii). Fix any n ∈ N and define
the functional χn : X ′ → R+ by the equality

χn(h) = lim
m

n+m
∏

k=n+1

ν̂k(h)|2, h ∈ X ′.

Evidently, χn is a positive definite normalized functional on X ′ and (ii)
readily implies that

ρ̂(h) = |µ̂n(h)|2χn(h), h ∈ Γ.
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Therefore by Proposition 1 there is βn ∈ Mt(X) such that ̂βn(h) = χn(h)
for all h ∈ Γ, and so

ρ = µm ∗ µ̃n ∗ βn.

Since this equality holds for all n and the one-element set {ρ} is tight, we
obtain that (iii) is valid.

The following theorem is the promised generalization of the mentioned
result of [9].

Theorem 3. Let X be a DS-group, νn, n ∈ N, be symmetric measures,
and suppose that there is a measure µ ∈Mt(X) such that the set

{h ∈ X ′ : lim
n

µ̂n(h) = µ̂(h)}

contains a separating subgroup Γ of X ′.
Then:
(a) the sequence (µn ◦ u−1) is tight and limn µn ◦ u−1 = µ ◦ u−1;
(b) if either νn, n ∈ N, are symmetrized measures or X is ws-root com-

pact, then the sequence (µn) is itself tight and limn µn = µ.

Proof.
(a). By Theorem 2 the sequence (µn) is shift-tight, which by Theorem

1′(e) implies that the sequence (µn ◦ u−1) is tight. This and Proposition 2
lead to (a).

(b), in the case of symmetrized measures, follows from Theorem 2 and
Theorem 1′(c); the case of ws-root compact X follows from Theorem 2,
Theorem 1′(f), and Proposition 2.

Remark. Below (see Proposition 4(f)) we shall see that Theorem 3 cannot
be improved.

To formulate a version of Theorem 3 for not necessarily symmetric mea-
sures we need some more notions.

Let X be a topological abelian group and Γ ⊂ X ′ be a nonempty subset.
Denote by σ(X, Γ) the weakest topology in X with respect to which all
members of Γ are continuous. If X is a topological vector space over R
with the non-trivial topological dual space X∗, then the usual weakened
topology σ(X, X∗) is finer than σ(X, X ′), but any sequence in X which is
convergent in the last topology also converges in the weakened topology.
That is why when the underlying group is a Banach space the following
notion coincides with the known one. We say that a DS-group X has the
Schur property if any sequence (xn) that is convergent in X with respect to
σ(X, X ′) converges also in the initial topology of X.
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Theorem 4. Let X be a metrizable DS-group and suppose that there is
an idempotent-free µ ∈Mt(X) such that

lim
n

µ̂n(h) = µ̂(h), ∀h ∈ X ′.

Then:
(a) there is a sequence (xn) in X and x ∈ X, such that (xn) converges

to x in the topology σ(X, X ′) and

lim
n

µn ∗ δxn = µ ∗ δx;

(b) if X has the Schur property, then limn µn = µ.

Proof.
(a). By Theorem 2 and Theorem 1′(b) there are a sequence (xn) and

µ′ ∈ Mt(X) such that limn µn ∗ δxn = µ′. We want to show that (xn)
converges in the topology σ(X,X ′) to an element x ∈ X. Evidently, we
have

lim
n

µ̂n(h)h(xn) = ̂µ′(h), ∀h ∈ X ′.

Denote
H := {h ∈ X ′ : lim

n
h(xn) exists}.

We have
{h ∈ X ′ : ̂µ′(h) 6= 0} ⊂ H.

Since |̂µ′| = |µ̂|, by Lemma 3 µ′ is also idempotent-free so that H = X ′.
Define now χ : X ′ → T by the equality

χ(h) = lim
n

h(xn), h ∈ X ′.

Clearly, χ is a character so that it is positive definite and the equality

µ̂(h)χ(h) = ̂µ′(h), h ∈ X,′

holds. By Proposition 1 there is β ∈Mt(X) such that ̂β = χ. Since |χ| = 1,
we have β = δx for some x ∈ X. Consequently we find that (xn) converges
to x in the topology σ(X, X ′) and µ ∗ δx = µ′.

(b) follows immediately from (a).

Remarks.
(1) Evidently, the Schur property is also necessary for the validity of the

conclusion of Theorem 4(b). In this sense the result is final.
(2) We do not know how essential the metrizability assumption and the

assumption that µ is idempotent-free are for the validity of Theorem 4.

Now we are going to show that Theorem 3 cannot be improved in the
whole class of DS-groups. For this we need an example of a DS-group which
is not a LCA-group and which is not ws-root compact. In particular, such a
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group will not be topologically isomorphic to a subgroup of any topological
vector space over Q.

As usual, RN denotes the vector space of all real sequences x : N → R,
and en, n ∈ N, is its natural basis. Let also Θ be the subgroup of RN
consisting of all integer-valued sequences with only a finite number of non-
zero terms. lp, where 0 < p < ∞, is the ordinary metric linear space of all
p-summable real sequences.

Proposition 4. Let Yp be the quotient group lp/Θ with the quotient met-
ric, κ : lp → Yp be the canonical surjection map, and yn := κ( 1

2en), n ∈ N.
Then:

(a) Yp is a complete separable metrizable DS-group;
(b) 2yn = Θ, ∀n ∈ N;
(c) the set {yn : n ∈ N} is not relatively compact in Yp;
(d) Yp is not ws-root compact;
(e) p > 1 =⇒ limn h(yn) = 1, ∀h ∈ (Yp)′;
(f) if p > 1, ν1 := δy1 , νn+1 := δ(yn+yn+1) and µn := ν1 ∗ ... ∗ νn for all

n ∈ N, then νn, n ∈ N are symmetric measures,

lim
n

µ̂n(h) = 1 ∀h ∈ (Yp)′,

µn ∗ µn = δΘ for all n, but the sequence (µn)n∈N does not converge in
Mt(Yp).

Proof.
(a). It is needed only to verify that Yp is a DS-group. For a fixed n ∈ N

define the map hn : Yp → T by

hn(κ(x)) = exp(2πiκ(x)), x ∈ lp.

Then hn, n ∈ N, are continuous characters separating the points of Yp.
(b) is evident.
(c). Let dp be the quotient metric on Yp. It is easy to see that

inf{dp(yn, ym) : n,m ∈ N, n 6= m} > 0,

i.e., the set {yn : n ∈ N} cannot be relatively compact.
(d) follows from (b) and (c).
(e). Since p > 1, the sequence ( 1

2en)n∈N converges to 0 in the weakened
topology of lp, and since κ is a continuous homomorphism, this easily implies
that (yn) tends to zero in the topology σ(Yp, (Yp)′).

(f) follows immediately from (b),(c), and (e).

Let us say that a DS-group X is an Ito–Nisio group if for any sequence
µ, νn, n ∈ N, of symmetric Radon probability measures on X for which

lim
n

(ν̂1(h)...ν̂n(h)) = µ̂(h) ∀h ∈ X ′,
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the sequence of convolution products ν1 ∗ ... ∗ νn, n ∈ N, converges to µ.
Theorem 3 says that all ws-root compact DS-groups are Ito–Nisio groups.
According to Proposition 4(f) the DS-group Yp is not a Ito–Nisio group when
p > 1; we do not know what happens when p ≤ 1. It seems interesting to
give an internal description of the class of all Ito-Nisio groups.

We also remark that the DS-group Yp from Proposition 3 is topologically
isomorphic to the DS-group lp(N,T) considered in [13].

3. Convergence of Sums of Independent Summands. In this
section we assume that (X, +) is a metrizable topological abelian group
and (Ω,A,P) is a fixed probability space. A Borel measurable mapping
ξ : Ω → X for which the range ξ(Ω) is separable and the distribution
Pξ := P ◦ ξ−1 is a Radon probability measure on X is called a random ele-
ment in X. If ξ1, ξ2 are random elements, then the pair (ξ1, ξ2) as a mapping
from Ω to X ×X is a random element in X ×X; this implies that the sum
ξ1 + ξ2 is also a random element in X. If ξ1, ξ2 are (stochastically) inde-
pendent random elements in X, then Pξ1+ξ2 = Pξ1 ∗Pξ2 . A random element
ξ in X is called symmetric if Pξ is a symmetric measure. Convergence al-
most surely (a.s.), respectively, convergence in probability, for a sequence of
random elements means convergence of P-almost everywhere, respectively,
convergence in measure P.

We emphasize that the above definition of a random element is not stan-
dard: besides the measurability and separability of the range it is also re-
quired that its distribution be a Radon measure. The last requirement is
essential when it is not assumed that the range-group is complete.

Throughout the section the following notation is used:
(ξn)n∈N is a fixed (stochastically) independent sequence of random ele-

ments in X;
νn := Pξn ∀n ∈ N;
ηn :=

∑n
k=1 ξk ∀n ∈ N;

µn := ν1 ∗ ... ∗ νn ∀n ∈ N;
Evidently, the independence implies that the distribution of ηn is µn for

all n ∈ N.
To obtain analogues of the theorems of the previous section for a.s. con-

vergence we need the following known generalization of another result of
P. Levy (see, e.g., [5], or [2, Ch.V.2, Corollary 1 of Theorem 3 and Exercises
3(b) and (c)]).

Theorem 5. Let X be a metrizable topological abelian group and the
sequence (µn) converge to an idempotent-free Radon probability measure µ
on X. Then the sequence (ηn) converges a.s. to a random element η in X
whose distribution is µ.
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Corollary 1. Let X be aperiodic and (µn) converge to a Radon proba-
bility measure µ on X. Then (ηn) converges a.s. to a random element η in
X with Pη = µ.

Proof. Since X is aperiodic and µ is idempotent-free, we see that Theorem
5 is applicable.

Remark. Aperiodicity is essential here. An analogous assertion is also
valid in the nonabelian case; see [6, Theorem 2.2.19].

Corollary 2. Let X be aperiodic, ξn, n ∈ N, be symmetric random ele-
ments, and the sequence (µn) be tight.

Then (ηn) converges a.s. to a random element in X.

Proof. Apply Theorem 1(g) and the previous corollary.

Remark. This corollary generalizes an analogous assertion of [9] (see also
Corollary 2 of Theorem 5.2.3 in [2]).

Corollary 3. Let X be a metrizable, ws-root compact, aperiodic, Suslin
group, T be a Hausdorff group topology in X which is weaker than the
initial topology of X; let further ξn, n ∈ N, be symmetric random elements
and suppose that there is a T -compact K ⊂ X such that

lim sup
n

µn(K) > 0.

Then (ηn) converges a.s. in the topology of X.

Proof. Apply Proposition 3(b) and Corollary 2.

Remark. This corollary is a refinement of the corresponding result of [10];
see Remark 2 to Proposition 3.

In the case of DS-groups it is possible to formulate the following criterion
of a.s. convergence.

Theorem 5′. Let X be a metrizable DS-group. The following statements
are equivalent:

(i) (ηn) converges a.s. to a random element η in X;
(ii) (µn) converges to a Radon probability measure µ on X and

lim
m,n

n+m
∏

k=n+1

ν̂k(h) = 1 ∀h ∈ X ′;

(iii) (µn) converges to a Radon probability measure µ on X and the set

H =
{

h ∈ X ′ : lim
m,n

n+m
∏

k=n+1

ν̂k(h) = 1
}

separates the points of X;
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(iv) (µn) is a tight sequence and the set

H =
{

h ∈ X ′ : lim
m,n

n+m
∏

k=n+1

ν̂k(h) = 1
}

separates the points of X.

Proof. It is well known that (i) implies the first part of (ii) with µ = Pη.
Fix now a character h ∈ X ′. Then again (i) implies

lim
n,m

n+m
∏

k=n+1

h ◦ ξk = 1

in probability and by Lebesgue’s theorem on convergence of integrals this
gives the second part of (ii).

The implications (i)=⇒(ii)=⇒(iii) =⇒(iv) are evident.
(iv)=⇒(iii). It is easy to see that H is a subgroup of X ′ and

H ⊂
{

h ∈ X ′ : lim
n

µ̂n(h) exists
}

.

This, by Proposition 2, implies the first part of (iii).
(iii)=⇒(i). Denote µn,m = νn+1∗...∗νn+m for all n,m ∈ N. The tightness

of (µn) implies that µn,m : n,m ∈ N is a tight family of Radon probability
measures on X; we have limn,m µ̂n,m(h) = 1 for all h ∈ H. Therefore by
Proposition 2 we obtain limn,m µn,m = δ0. This implies that the sequence
(ηn) is a Cauchy sequence in probability. Consequently this sequence con-
verges in probability and thus almost surely to a random element η1 in the
completion of X. From this, since µ is a Radon probability measure on X,
we can easily derive that η1 equals a.s. a random element η in X (cf. [2,
p. 269, the proof of Corollary 1]).

Remark. The implication (ii)=⇒(i) of Theorem 5′ and the Corollary to
Lemma 3 immediately imply an alternative proof of Theorem 5 in the case
of DS-groups.

Theorem 6. Let X be a metrizable DS-group and suppose that there is
an idempotent-free Radon probability measure ρ on X such that the set

{h ∈ X ′ : lim
n
|µ̂n(h)|2 = ρ̂(h)}

contains a separating subgroup Γ of X ′.
Then:
(a) there is a sequence (xn) in X such that (ηn + xn) converges a.s. to a

random element in X;
(b) if νn, n ∈ N, are symmetrized measures, then (ηn) converges a.s. to

a random element in X;
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(c) if ξn, n ∈ N, are symmetric random elements, then (2ηn) converges
a.s. to a random element in X;

(d) if X is a ws-root compact group containing no second-order elements
and ξn, n ∈ N, are symmetric random elements, then (ηn) itself converges
to a random element in X.

Proof.
(a). By Theorem 2 and Theorem 1′(b) there is a sequence (xn) in X

such that limn µn ∗ δxn = µ ∈ Mt(X) and µ ∗ µ̃ = ρ. Evidently, µ is also
idempotent-free and it remains to apply Theorem 5.

(b) follows directly from Theorem 2, Theorem 1′(c), and Theorem 5.
(c). An application of (a), symmetry, and Theorem 5 give that the se-

quences (ηn + xn) and (ηn − xn) are convergent to their limit random ele-
ments in X a.s. This clearly implies the needed conclusion.

(d) follows directly from Theorem 2, Theorem 1′(h), and Theorem 5.

Corollary. Let X be a metrizable, ws-root compact, and aperiodic DS-
group, ξn, n ∈ N, be symmetric, and suppose that there is a Radon probability
measure ρ on X such that the set

{h ∈ X ′ : lim
n
|µ̂n(h)|2 = ρ̂(h)}

contains a separating subgroup of X ′.
Then (ηn) converges a.s. to a random element in X.

Proof. Since X is aperiodic, ρ is idempotent-free, and X contains no second-
order elements, we conclude that Theorem 6(d) is applicable.

The following assertion is a version of Theorem 3 for a.s. convergence.

Theorem 7. Let X be a metrizable DS-group, ξn, n ∈ N, be symmet-
ric random elements, and suppose that there is an idempotent-free Radon
probability measure µ on X such that the set

{h ∈ X ′ : lim
n

µ̂n(h) = µ̂(h)}

contains a separating subgroup Γ of X ′.
Then:
(a) the sequence (2ηn) converges a.s. to a random element in X;
(b) if either νn, n ∈ N, are symmetrized measures or X is ws-root com-

pact, then (ηn) itself converges a.s. to a randon element in X.

Proof. (a) follows from Theorem 6(c); (b) follows from Theorem 3(b) and
Theorem 5.
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Remarks.
(1) Proposition 4(f) shows that Theorem 7(b) is not valid without the

assumption of ws-root compactness even for arbitrary complete separable
metrizable DS-groups.

(2) Theorem 7(b) for Banach spaces and Γ = X ′ is proved in [9]; the case
of complete separable metrizable topological vector spaces and arbitrary Γ
is considered in [10] (see also [2, Theorem 5.2.4]).

The following assertion, which is a consequence of Theorem 7 and the
Borel–Cantelli lemma, gives a necessary condition for the convergence of an
infinite product of characteristic functionals to a characteristic functional.

Proposition 5. Let X be a metrizable DS-group and (νn)n∈N be a se-
quence of symmetric Radon probability measures on X. Also suppose that
there is a Radon probability measure µ on X such that the set {h ∈ X ′ :
µ̂(h) 6= 0} separates the points of X and the set

{h ∈ X ′ : lim
n

n
∏

k=1

ν̂k(h) = µ̂(h)}

contains a separating subgroup of X ′. Also let V be any open neighborhood
of zero in X.

Then:
(a)

∑

n

νn({x ∈ X : 2x /∈ V }) < ∞;

(b) if either νn, n ∈ N, are symmetrized measures or X is ws-root com-
pact, then

∑

n

νn(X \ V ) < ∞.

Proof. (a). Let d be an invariant metric which is compatible with the to-
pology of X. Then there is εV > 0 such that

{x ∈ X : d(x, 0) < εV } ⊂ V.

Choose now a probability space (Ω,A,P) and an independent sequence ξn :
Ω → X, n ∈ N of random elements such that P ◦ ξ−1

n = νn for all n ∈ N.
The assumption according to Theorem 7(a) implies that the series

∑

n 2ξn
is a.s. convergent in X. In particular, d(2ξn(.), θ) → 0 a.s. when n → ∞.
This and the independence according to the Borel–Cantelli lemma (see, e.g.,
[2, Corollary (b) to Proposition 5.1.3]) imply

∑

n

νn({x ∈ X : d(2x, θ) ≥ ε}) =
∑

n

P({ω ∈ Ω : d(2ξn(ω), θ) ≥ ε}) < ∞

for all ε > 0. This implies (a), since

{x ∈ X : d(2x, θ) < εV } ⊂ {x ∈ X : 2x ∈ V }.
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(b) follows in a similar way from Theorem 7(b).

4. Connection with the Sazonov Property. A DS-group X is said to
possess the Sazonov property if in X ′ there exists an admissible topology T ,
which is a topology in X ′ with the following two properties: T is a necessary
topology, i.e., the characteristic functional of any Radon probability measure
on X is T -continuous and T is also a sufficient topology, i.e., any positive
definite normalized T -continuous χ : X ′ → C is the characteristic func-
tional of a Radon probability measure on X. The Bochner theorem in this
terminology means that if X is a LCA-group, then comp(X ′, X) is an ad-
missible topology; the Minlos theorem (see [2, Theorem 6.4.3]) implies that
the same is also true when X is a nuclear Frechet space or even if X is a com-
plete metrizable nuclear group (see [14], where the notion is introduced and
the Bochner theorem for such groups is obtained). But if X is an infinite-
dimensional Banach space, then comp(X ′, X) is not an admissible topology.
The existence of an admissible topology for an infinite-dimensional Hilbert
space was established by Sazonov and, independently, by L. Gross; the ex-
istence and characterization of a class of (non-Hilbertian) Banach spaces
which possess the Sazonov property were obtained by Mushtari (see [2,
Ch.VI] or [15] for further information and comments). For DS-groups the
question was studied in [13]. The spaces lp, 0 < p ≤ 2;Lp, 1 ≤ p ≤ 2, possess
the Sazonov property (Mushtari). The same is true for the DS-groups Yp,
0 < p ≤ 2, considered in Section 2, see [13].

Let X be a DS-group. Denote by Fo(X ′, X) the weakest topology in X
with respect to which the functionals µ̂, µ ∈ Mt(X) are continuous. Evi-
dently, Fo(X ′, X) is the weakest necessary topology in X ′. This topology
is a group topology, i.e., it is compatible with the group structure of X ′ (cf.
[16], where a similar assertion is proved for topological vector spaces). We
can say that a DS-group X possesses the Sazonov property iff Fo(X ′, X) is
a sufficient topology.

For DS-groups which possess the Sazonov property the convergence of
convolution products by means of characteristic functionals can be verified
in a more traditional way.

Proposition 6. Let X be a DS-group which possesses the Sazonov pro-
perty, T be an admissible topology in X ′, (νn)n∈N be a sequence of Radon
probability measures on X, and µn := ν1 ∗ ... ∗ νn for all n.

The following statements are equivalent:
(a) the sequence (µn ∗ µ̃n)n∈N converges in Mt(X);
(b) χ := limn |µ̂n|2 is a T -continuous functional on X ′.

Proof. The implication (a)=⇒(b) is evident.
(b)=⇒(a). Evidently, χ is a positive definite normalized functional on

X ′ and, by assumption, is continuous in an admissible topology. Therefore
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χ = ρ̂ for a Radon probability measure ρ on X. Now it remains to apply
Theorem 2(c).

Let us say that a DS-group X possesses the Sazonov property in a wide
sense if in X ′ there is a necessary topology T such that the implication
(b) =⇒ (a) of Proposition 6 remains valid. Thus, Proposition 6 says that if
a DS-group possesses the Sazonov property then it possesses the Sazonov
property in a wide sense too. It is known that if a Banach space X possesses
the Sazonov property then X is of cotype 2 [2, Proposition 6.2.4, Corollary].
We shall show that a similar assertion is also valid for metrizable DS-groups
possessing the Sazonov property in a wide sense. For this we present a
definition of cotype 2 in the case of general topological abelian groups.

Let (X, +) be a group and V ⊂ X be a nonempty subset. Define the
functional mV : X → N ∪ {∞} by the equality (inf ∅ := ∞)

mV (x) = inf{n ∈ N : nx /∈ V }, x ∈ X.

A closely related functional nx
V is used in [14, p. 8]. It is easy to see that if

X is a vector space over R and V is a radial subset (i.e., rV ⊂ V ∀r ∈ [0, 1])
and ||.||V is its Minkowski functional, then

1
mV (x)

≤ ||x||V ≤ 2
1

mV (x)− 1
∀x ∈ X.

Here and below we put 1
∞ = 0, 1

0 = ∞ .
A probability measure π on the additive group Z of integers is called a

symmetrized Poisson measure if π = α ∗ α̃, where α = exp(− 1
2 )

∑∞
j=0

1
2jj!δj

is the ordinary Poisson measure with parameter 1
2 . An independent se-

quence (ζn)n∈N of integer-valued random elements on a probability space
(Ω,A,P) is called a Poisson sequence; respectively, a Rademacher sequence
if Pζn = π; respectively, if Pζn = 1

2δ(−1) + 1
2δ1 for all n. It is easy to see that

if (ζn) is a Poisson or Rademacher sequence and (tn) is a sequence in T,
then the infinite product

∏

n tζn
n converges a.s. in T iff

∑

n(1−<tn) < ∞.

Lemma 5. Let X be a metrizable DS-group, (xn) be a sequence in X,
and (ζn) be a Poisson sequence. The following assertions are equivalent:

(i) the series
∑

n ζnxn converges a.s. to a random element η in X;
(ii)

∑

n(1−<h(xn)) < ∞ for all h ∈ X ′ and the functional χ defined by
the equality

χ(h) = exp(
∑

n

(<h(xn)− 1)), h ∈ X ′,

is the characteristic functional of a Radon probability measure µ on X.



ON ITO–NISIO TYPE THEOREMS FOR DS-GROUPS 497

Proof. Let us denote by νn the distribution of ζnxn. Then we shall have

ν̂n(h) = exp(<h(xn)− 1) ∀n ∈ N,∀h ∈ X ′.

Now the implication (i)=⇒(ii) is easy: the first part of (ii) follows at once
from the assertion mentioned before the lemma and the second part follows
from the independence if we put Pη = µ. The implication (ii)=⇒(i) follows
from Theorem 7(b), since νn, n ∈ N, are symmetrized measures and µ̂(h) >
0 for all h ∈ X ′.

Remark. If in Lemma 5 instead of a Poisson sequence we consider a
Rademacher sequence and in (ii) we take

χ(h) =
∏

n

<h(xn), h ∈ X ′,

then the implication (i)=⇒(ii) remains valid. According to Theorem 7(b),
if X is ws-root compact, the implication (ii)=⇒(i) also holds. Proposition
4(f) shows that ws-root compactness is essential here.

Let (X, +) be a metrizable topological group, and p, 0 < p < ∞, be a
number. X is said to be of Poisson, respectively, Rademacher, cotype p if
for any sequence (xn) in X for which the series

∑

n ζnxn a.s. converges to
a random element in X, where (ζn) is a Poisson, respectively, Rademacher,
sequence, the condition

∑

n

1
mp

V (xn)
< ∞

is satisfied for any neighborhood V of zero in X.
It is easy to see that in the case of Banach spaces the given definition

agrees with the known definitions. Also, it is known that in this case the
notions of Poisson and Rademacher cotypes coincide (see [17]).

Proposition 7. Let X be a metrizable DS-group which possesses the
Sazonov property in a wide sense; in particular, suppose that X possesses
the Sazonov property. Then X is of Poisson cotype 2.

Proof. Fix a symmetric open neighborhood V of zero and a sequence (xn)
in X such that the series

∑

n ζnxn converges a.s. to a r.e. in X for a Poisson
sequence (ζn) . We want to show that 1

m2
V (xn) < ∞. Denote kn = mV (xn).

Since, evidently, limn xn = θ, we can suppose that kn > 1 for all n. Take
now qn such that 0 < qn < 1 and qn(1− qn) = 1

2k2
n

for all n and define

ν′n := qnδknxn + (1− qn)δθ ∀n ∈ N.

Then we shall have

ν′n ∗ ν̃′n =
1

2k2
n
δknxn +

1
2k2

n
δ(−knxn) + (1− 1

k2
n
)δθ ∀n ∈ N
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and

|̂ν′n(h)|2 = 1− 1
k2

n
(1−<(h(knxn))) ∀n ∈ N ∀h ∈ X ′.

Now by the first part of Lemma 5(ii) it is easy to see that

χ′(h) :=
∏

n

|̂ν′n(h)|2 > 0 ∀h ∈ X ′.

Clearly, χ′ is a positive definite normalized functional on X ′ and

1− χ′(h) ≤ ln µ̂(h) ∀h ∈ X ′,

where µ is the measure from Lemma 5(ii). This inequality implies that
χ is continuous in the topology Fo(X ′, X) (here the fact that the latter
is a group topology is used). Therefore it is also continuous with respect
to any necessary topology in X ′. Since by our assumption X possesses
the wide sense Sazonov property, we conclude that the sequence (ν′1 ∗ ν̃′1 ∗
· · · ∗ ν′n ∗ ν̃′n)n∈N converges to a Radon probability measure µ′ on X. This
immediately implies

∏

n

|̂ν′n(h)|2 = ̂µ′(h) ∀h ∈ X ′.

According to Proposition 5 this equality gives
∑

n

ν′n ∗ ν̃′n(X \ V ) < ∞.

Since evidently

ν′n ∗ ν̃′n(X \ V ) =
1
k2

n

for all n, we now obtain
∑

n
1

k2
n

< ∞.

Remark. If X is a Banach space possessing the Sazonov property in a
wide sense, then by using the same method and Theorem 6.2.3 from [2]
it can be proved that X is isomorphic to a closed subspace of the space
L0(Ω,A,P). From this it follows that if a Banach space X possesses the
Sazonov property in a wide sense and has the approximation property (or
even the measure approximation property; see [16]) too, then X possesses
the Sazonov property. For the general case a similar assertion is unknown.

Proposition 8. For 2 < p < ∞, the group Yp (see Proposition 4) is not
of Poisson cotype 2. Therefore it does not possess the Sazonov property in
a wide sense, in particular, it does not possess the Sazonov property.
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Proof. We use the same notations as in Proposition 4. Take kn = [(n+1)
1
2 ]

for all n ∈ N (here [.] means the integer part); put xn := κ( 1
2kn

en) for all
n and V0 := {y ∈ Yp : dp(y, θ) < 1

4}. Let us show that the series
∑

n ζnxn,
where (ζn) is a Poisson sequence, converges a.s. in Yp. In fact, we have

∑

n

∫

Ω

∣

∣

∣

1
kn

ζn

∣

∣

∣

p
dP =

(
∑

n

1
kp

n

)

∫

Ω

|ζ1|pdP < ∞.

Consequently, the series
∑

n
ζn
2kn

en is a.s. convergent in lp. Therefore the
series

∑

n ζnxn is also a.s. convergent in Yp. Now, since dp(knxn, θ) = 1
2 ,

we obtain mV (xn) ≤ kn for all n and so
∑

n

1
m2

V (xn)
≥

∑

n

1
k2

n
= ∞,

i.e., Yp is not of Poisson cotype 2. The rest follows from Proposition 7.

Remark. It is well known that for 2 < p < ∞, the Banach space lp is
not of cotype 2, but from this fact it does not follow automatically that its
quotient Yp := lp/Θ is not of cotype 2 either; there is a Banach space E
that is not of cotype 2 and its closed subspace F such that both spaces F
and E/F are linearly isometric to a Hilbert space (Lindenstrauss, see [18]).

The above corollary shows that the DS-groups Yp, 0 < p < ∞, inherit
the properties of the spaces lp, 0 < p < ∞: when 0 < p ≤ 2 in both cases
we have the Sazonov property, and when 2 < p < ∞ we do not have it.
This completes the corresponding result of [13], where the case of groups
Yp, 2 < p < ∞, was left open. This circumstance served as the motivation
for this paper.
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