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ON THE NUMBER OF REPRESENTATIONS OF POSITIVE
INTEGERS BY A DIRECT SUM OF BINARY
QUADRATIC FORMS WITH DISCRIMINANT -23

G. LOMADZE

ABSTRACT. Explicit exact formulas are obtained for the number of
representations of positive integers by some direct sums of quadratic
forms Fy = z? 4+ 2172 + 623 and ®1 = 222 + z122 + 322.

Let
F = x? + 129 + 6:5% and ¢, = 2x% + x120 + 3:5%.

These are primitive reduced binary quadratic forms with discriminant A =
—23. For each k > 1, let Fj, and ®;, denote the direct sums of k copies of
Fy and @1, respectively.

In [1] exact formulas are derived for the number of representations of
a positive integer by positive quadratic forms in six variables with integral
coefficients, among which there are suitable formulas for the quadratic forms
F3, F2 D @1, F1 D (I)Q and (I>3,

In [2] explicit exact formulas are derived for the arithmetical function
r(n; Q), the number of representations of a positive integer n by the quadratic
forms Q, for Q = Fy, F} ® &1 and 5.

In the present paper we obtain formulas for r(n; Q) when Q = Fy, F3®®,
F2 D @27 F1 D @3 and @4.

It should be pointed out that the approach described here enables one to
get formulas for r(n; Q) for Q = F, O, F; &P, (i,5 > 1,i+j = k), where
k > 4. However the calculations will be very tedious.

In this paper the notation, definitions, and some results from [3] will be
mostly used.
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§ 1. SoME KNOwN RESULTS
Let
Q:Q(xlax%"wxf): Z brsxr‘rs

1<r<s<f

be a positive quadratic form in f (f is even) variables with integral coeffi-
cients b,s. Further let D be the determinant of the quadratic form

f
2Q = Z ArsTrTs (a'rr = 2b7‘ra Ars = Qgr = br.97 r < 5);

r,s=1

A, the algebraic cofactors of elements a,, in D; A the discriminant of the
form Q, ie., A = (=1)7/?D; § = g.c.d.(AQ’""',ATS) (r,s=1,...,f); N = %
the level of the form @Q; x(d) the character of the form @Q, i.e., x(d) =1
if A is a perfect square, but if A is not a perfect square and 2 T A, then
x(d) = (ﬁ) for d > 0 and x(d) = (=1)//*x(~=d) for d < 0 (here ({%}) is
the generalized Jacobi symbol). A positive quadratic form in f variables of
level N and character x(d) is called a quadratic form of type (—f/2, N, x).
Finally, let P, = P, (21, x2,...,2¢) be a spherical function of order v (v is
a positive integer) with respect to the quadratic form Q.

In what follows ¢ is an odd prime and z = exp(27i7), Im7 > 0.

As is wellknown, to each positive quadratic form () there corresponds the
theta-series

I1;Q) = 1—|—ZT(n;Q)z". (1.1)
n=1

We shall formulate the well-known results in the form of the following lem-
mas.

Lemma 1 ([3], p. 874, 875, 817; see also [4], p. 15). Any positive
quadratic form @ of type (—k,q,1), 2|k, k > 2, corresponds to one and the
same Fisenstein series

E(r:Q) =1+ (a0k_1(n)2" + Bop_1(n)="),

where
kgl _ 1 gF —ikgh/?
a= gy b= (1.2)
Pr 4 Pr g
(k—1)!
Pk = (_1)k/2 (27T)k ( ) (1 3)
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Lemma 2 ([3], pp.874, 875, 895). If Q is a primitive quadratic form
of type (—k,q,1), 2|k, then the difference ¥(1;Q) — E(7; Q) is a cusp form
of type (—k,q,1).

Lemma 3 ([3], p. 853, Theorem 33). The homogeneous quadratic
polynomials in f variables @, = T, T, — % % 2Q (r,s=1,2,...,f) are
spherical functions of second order with respect to the positive quadratic
form Q in f variables.

Lemma 4 ([3], p. 855). If Q is a quadratic form of type (—f/2, N, x)
and P, is the spherical function of order v with respect to @, then the
generalized multiple theta-series

Q. P,) = ( > 7>>

is a cusp form of type (—(f/2+v), N, x).

Lemma 5 ([3], p.846). If the quadratic forms Q1 and Q2 have the same
level N and characters x1(d) and x2(d), respectively, then the quadratic
form Q1 ® Q2 will have the level N and the character x1(d)x2(d).

8§ 2. SOME AUXILIARY RESULTS

2.1. For the quadratic form F; we have D = 23, Ay = 12, Ay = 2, i.e.,
§=1 N=23 A=-23 x=x(d) = (%) if d > 0. For the quadratic
form ®; we have D =23, A11 =6, Asy = 4,ie,d=1, N =23, A = —-23,
x = x(d) = (%) if d > 0. Hence F; and ®; are quadratic forms of type
(—1,23,%). Thus, by Lemma 5, Fy, @5, and F; & ®; are quadratic forms of
type (—2,23,1).

For the quadratic form F» we have D =232, A;; = 1223, Ayy = 2-23.
Hence, if in Lemma 3 we put

f:47 Q:FQa 7’:8:1,
then the polynomial
6
23
will be a spherical function of second order with respect to F5.

For the quadratic form ®5 we have D = 232, Ay = 623, Aoy = 4-23.
Hence, if in Lemma 3 we put

2
o1 =a7 — 5 o

f:47 Q:(I)27 T:5:1, and ’I‘:S:Z,
then the polynomials

2
Py and oo =15 — — D

_ 2
= 23

23
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will be spherical functions of second order with respect to ®s.

For the quadratic form F; @ ®; we have D = 232, A1 = 1223, Agy =

2 -23. Hence, if in Lemma 3 we put
f=4, Q=F®®;,, r=s=1, and r=s=2,

then the polynomials

6 1
(PIIZI%_ﬁ(FI@q)l) and 9022:1‘%_%

will be spherical functions of second order with respect to F; & ®;.

(F1 @ q)

2.2. It is easy to verify that the equation F} = n

(a) has two integral solutions for n = 1: x; = %1, x5 = 0;
(b) has no integral solutions for n = 2,3, 5;
(¢) has two integral solutions for n = 4: z7 = +2, x5 = 0.

Also it is easy to verify that the equation ®; =n

(a) has no integral solutions for n = 1,5;

(b) has two integral solutions for n = 2: ;3 = +1, 29 = 0;
(¢) has two integral solutions for n = 3: z1 =0, 22 = 1.
(d) has two integral solutions for n =4: 1 = £1, zo = F1.

Hence, according to (1.1), we have
W F) =142z + 22" 4025+ -+
I @) = 142224223 + 224 4025+ -+
From (2.1) it follows that
W Fo) =0 (1yFy) = 1+ 4z + 422 +42* +82° + -+,
whence
I3 F3) = (75 Fo)9(1; Fy) = 1+ 62 + 1227 + 82 +62% +242° + .. .
From (2.2) it follows that
I(T; Do) = 92 (7; 1) = 1+ 427 + 425 + 82 +825 ..+
whence
V(1 @3) = I(1; Po)I(1; 1) = 1+ 622 +62° + 1827 +242° + .- .
From (2.1) and (2.2) it follows that
I Fr @ 1) = I(1; F1)I(7; @1) =
=1+4+22+222 4623 + 824 +42° +---.

(2.3)

(2.4)

(2.5)

(2.6)
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§ 3. FORMULAS FOR 7(n; Fy), 7(n; ®4), r(n; F3 ® ®1), r(n; Fy @ ®,),
r(n; F1 @ @3)

Theorem 1. The system of generalized fourfold theta-series

(73 Fa, 011) = % Z ( > 2327 - 6n> (3.1)

n=1 “Fy=n

( > 2327 - 6n> 2", (3.2)
1 “F1pP1=n
( Z 2322 — n) 2", (3.3)

W F1 @ @1, 0m1) =

83—
M8

n

W1 F1 @ 1, 022) =

&=
|M8

= FipdPi=n
1 00
(7 @2, 011) = o Z ( > 2327 - Sn) (3.4)
1=1 Po=n
1 00
19(’7' (I)Q,QDQQ ? Z ( Z 231’2 — 271) (35)
n=1 bo=n

is a basis of the space S4(23,1) (the space of cusp forms of type (—4,23,1)).

Proof. 1. As said above, F» is a quadratic form of type (—2,23,1) and

P11 = x% - % Fy
is a spherical function of second order with respect to F5. Hence, by Lemma
4, the theta-series (3.1) is a cusp form of type (—4,23,1).
Taking into account (2.3), it is not difficult to verify that the equation
FQ =N
(a) has four integral solutions for n = 1: x1 = +1, 29 = 3 = x4 = 0;
r3 =21, 21 =x0 =24 = 0;
(b) has four integral solutions for n = 3: 1 = +1, 23 = 1, 2o = x4 = 0;
r1 =21, 23 =—1, 20 =24 =0 for n = 2;
(¢) has no integral solutions for n = 3;
(d) has four integral solutions for n = 4: 1 = £2, 19 = x5 = x4 = 0;
T3 =12, 11 =x9 =14 = 0;
(e) has eight integral solutions for n =5: 1 = £2, 3 =1, x0 = x4 =

0; 21 =22, 23 = -1, 20 =24 =0; 1 = *1, 3 = 2, 2 = 24 = 0;
$1:i1,$3:—2,l‘2:l’4:0.
Hence

1
19(T;F2,<p11):2—3{(23-276~4)Z+(23—6'2)422+
+(23-4-2-6-4-4)2" +(23-4-4423-4-6-5-8)2"+ -} =



528 G. LOMADZE

_2 M, 88, 20 5
T 93° T 937 To3® Tzt

II. As said above F; @ ®; is a quadratic form of type (—2,23,1) and

TR (3.6)

6 1
=22—- —(FL&d =2—- —(FLed
Y11 = I3 23( 1®®) and oo = x5 23( 1D D)

are spherical functions of second order with respect to F; & ®;.
Hence, by Lemma 4, the theta-series (3.2) and (3.3) are cusp forms of
type (—4,23,1).
Taking into account (2.7), it is not difficult to verify that the equation
F1 D CI)l =N
(a) has two integral solutions for n =1: z1 = £1, 3 = x3 = x4 = 0;
(b) has two integral solutions for n = 2: x3 = +1, 21 = x93 = 24 = 0;
(c) has six integral solutions for n = 3: 1 = +1, 23 = 1, 29 = 24 = 0;

r1=Fl,z3=—-1, 29=04=0; 21 =29 =23 =0, xq4 = +1;

(d) has eight integral solutions for n = 4: zy = £1, x4 =1, &0 = 23 =
0; $1::|:175L'4:—1,$2:£L'3:0; x1:i27x2:x3:x4:0;
r1=22=0,23=1,x4=—-1; 21 =22=0,23=—-1, 24 = 1;

(e) has four integral solutions for n = 5: 1 = +1, 23 = 1, &4y = —1,
ro =021 ==%1, 20 =0, x3 = —1, x4 = 1.

Hence,

1
I(r; FL © @1, 011) = %{(23 —6)2z 4 (=6-2-2)2 +

+23:4-6-3:6)2°+(23-4-2+23-4—6-4-8)2* +(23—6-5:4) 2"+ - - - } =
34 24 16 84 28
2%2—2*322—%23—1-%24—%,254-“-, (37)
V(75 F1 @ 1, po2) =

1
—{-2:-2-22"-3-62"-4-82" -5 4" +... } =

23
2 4, 18 , 32, 2 ,
23z 232’ 23z 23z 23z + ) (3.8)

III. As said above @4 is a quadratic form of type (—2,23,1) and

3 2
(pllil’%fzf?)(bg and ()022:1'%7%(1)2

are spherical functions of second order with respect to ®5. Hence, by Lemma
4, theta-series (3.4) and (3.5) are cusp forms of type (—4,23,1).
Taking into account (2.5) it is easy to verify that the equation &5 =n
(a) has no integral solutions for n = 1;
(b) has four integral solutions for n = 2: 1 = +1, 29 = x5 = x4 = 0;
r3 ==*1, 11 =290 =24 = 0
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(c) has four integral solutions for n = 3: x9 = +1, z1 = 23 = x4 = 0;
T =20 =x3 =0, x4 = £1;
(d) has eight integral solutions for n = 4: 7 = +1, 23 =1, x93 = 24 =

Oy =xl,z3=—-1,20=24=0;21 =1, 29 = -1, 3 = x4 = 0;
x1=-1L, =123 =24=0; 21 =22 =0, 23 =1, 24 = -1
$1:$2:O, 1‘3:71, 354:1;

(e) has eight integral solutions for n = 5: x1 = 1, 29 = 23 = 0,
za =1,z =2l 20 =23 =0, 24 = —1; v1 = x4 = 0, zo = £1,
r3=121 =24=0, 29 = %1, z3 = —1.

Hence
19(7';@2,(,011) (23 1-2—-3-2- 4)2’ -3-3- 42 +

23
+(23-1-6-3-4-8)z*+(23-1-4-3-5-8)z° +---} =
22 36 42
2203 4

=7 Tpttpt Tpst (39)
(75 B2, 02) = o2 —2.2-422 +(23-1-2-2-3-4)2° +
+(23-1-2-2-4-8)2" +(23-1-4-2-5-8)2° +--- } =

6 , 22 , .
i T B . T TP 3.10
93% T3 Tg% Tzt Tt (3.10)

The system of theta-series (3.1)—(3.5) is linearly independent, since the
determinant of fifth order whose elements are coefficients in the expansions

of these theta-series is different from zero. Thus the theorem is proved, since
dim S4(23,1) =5 [3, p. 900]. O

Theorem 2.

2 240
r(n; Fy) = 3 o5(n) 11 53( Z 2327 — 6n>

440 2640
— 2327 —6n ) — ——x 2322 —n | —
+23-53<F >, 2 ”) 23-53< >, 23 ")

1&P1=n FiePi1=n
8144 14096
- 2327 — - 2322 — 2 I
2353 <¢Z Sy 3") 2353 <¢Z 323 ”) M
2=N 2=n

2
r(n; ®4) = =3 5 (n) — 1. 53( Z 2327 — 6n>

16
2 2 2322 —n ) —
+23-53< >, ai- > 23 53< 373 ">
F16P1=n

F16P1=n
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- 512 (Z 2307

24

T(n§F3€B(I)1): 53

175 )
+23-53< > 239516”>

F19®1=n

24

r(n; Fo @ ®g) = =

122 5 732 )
+23_53< > 23:51—671)—23'53( > 23x2—n>—

F19®1=n

1360 ( Z 2302

r(n; Iy ® ®3) =

3 2
+53< Z 23%1 —

Fi®oPi=n
1201
232
T23. 53( Zn o

where

G. LOMADZE

1164
3n> - ( Z 23z2 — 2n)

28
o3(n) — 11 53 53( Z 2312 — 6n> +

F2:n

F19®1=n

2685 4609
<Z23x1—3> <Z23x2—2n)
28
os(n) — .53 53( Z 2322 — 6n> +

2=n

F19®1=n

2330
3n>— <Z 23x2—2n)
28
—_— 2327 —
11.53(2 30 6n>+

18 9
6n> 53( Z 23x2—n> -
Fi@®i1=n

1959
—3n) - s 2325 — 2
n> 23~53(®Z 2 “)
2="N

if 231 n,

:O’g(n) +23203<%) lf 23|n

Proof. From (2.3), (2.5

19(7'; F4)
(15 Dy)

respectively. The couples of relations (2.2) and (2.4), (2.3) and (2.4

and (2.6) lead to

W7 F3 @ Oq)

) follow the relations

= 9%(r; Fy) = 1+ 82 + 2427 + 322% + 242" + 482" + -
= 192(7'5 ®y) =1+ 822 +82% +322% +482° + ...

= 9(1; F3)¥(7; @) =

= 1462+ 142% + 2223 + 4424 +762° + -,

1050 )
23_53< > 23$2n>

(IT)

(I11)

(IV)

(V)

(3.11)
(3.12)

), (2.1)

(3.13)
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V(7 F © ®g) = I(7; F2)(7; P2) =

=144z +82% +202° + 442" +642° + - - -, (3.14)
I(7; F1 & P3) = I(7; F1)I(75 P3) =
=1+22462%4+182% + 322" +602° +-- -, (3.15)

respectively. By Lemma 5, Fy, &4, F3 @& ®1, F» & ®5 and F; & P3 are
quadratic forms of type (—4,23,1), to which by Lemma 1 there corresponds
one and the same Eisenstein series. For k = 4, from (1.2) we have

123°-1 1 1 ﬁ_i234_232_i 237
Cops 2301 py 23241

T2 1 p 234 U

where ps = 555 [3, p. 823] . Thus for all these forms we have

E(r;Fy) = E(1;94) = E(1; F5 & ®1) = E(1; Fo @ ®2) = E(1; FL @ ®3) =

24 &
=1+ 53 ;(03(n)z” +23%03(n)2*") = (3.16)
24 24 -9 24 - 28 24 -73 24 -126
=1+= 2 3 4 S4.... (3.6
+53 2+ 5y + 53~ + T + P 7 + (3.161)

(I). By Lemma 2, the difference 9(7; Fy) — E(7; F4) is a cusp form of type
(—4,23,1). Hence, by Theorem 1, there exist numbers ¢y, ..., cs such that

(73 Fy) — E(1; Fy) = c19(7; Fa, 011) + c0(7; F1 @ @1, 011) +
+c39(T; F1 @ O, 022) + ca¥ (15 Pa, 011) + c59(T; Do, 022).

Equating the coefficients of z, 22, ..., 2" on both sides of this equality and
taking into account (3.11), (3.161) and (3.6)—(3.10), we can find these num-
bers and obtain

240 - 23
I, Fy) = E(1; Fy) — ETT) Ir; Fo,011) +

440 2640
+ g’l?(T;Fl @ Dy, 011) — 3 I Fy & @1, 090) —

8144 14096

— ﬁﬁ(ﬂ@z,ipu) T Tr3 (73 o, p22).

Equating now the coefficients of z” on both sides of this equation, by (1.1),
(3.16), and (3.1)—(3.5), we get the desired formula (T).

(IT)-(V). Applying the same arguments as above except that (3.11) is
replaced by (3.12), (3.13), (3.14), and (3.15) for the quadratic forms ®4, P5@
Dy, [ ® Oy, and P @ P3, respectively, we obtain

644

W15 Fa,011) +
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16 96
Y Y B Y - -
+5319(7'7 1D P, 011) 5319(7, 1D Py, p22)
512 1164
- -(I) - .(p
53 V(13 o, 011) 53 (T3 o, 022),
644
W1, F3© ®1) = E(1; F3® @) — ﬁﬂ(T;Fm@n) +
175 1050
+§19(7-;F1@q)179011)_§§(7§F1@(I)1a§022)_
2685 4609
*‘jigfﬂ(T;@27@11)‘*‘Ei;’ﬁ(73¢27¢22%
644
O(7, F2 ® 02) = B(1; F2 @ @) — 77— (3 F2, 011) +
122 732
+§19(T;F1®q’17@11)—519(7;1“1@@1,%022)—
1360 2330
_Kﬁ(ﬂ@%@ll)_§6(7§©27@22)7
644
ﬁ(T,Fl@(I):g):E(T;Fl@(I)g)—11.53’[9(T;F2,§011)+
69 414
+£19(T;F1€B‘I)179011)—519(7;1*1@@17%022)—
1201 1959
s TEer = 2 (s By, oa0).
53 (T, 278011) 53 (T, 27@22)

From these identities, as above, we get the formulas (II)-(V). O
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