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REGULARITY IN MORREY SPACES OF STRONG
SOLUTIONS TO NONDIVERGENCE ELLIPTIC
EQUATIONS WITH VMO COEFFICIENTS

DASHAN FAN, SHANZHEN LU, AND DACHUN YANG

ABSTRACT. In this paper, by means of the theories of singular inte-
grals and linear commutators,the authors establish the regularity in
Morrey spaces of strong solutions to nondivergence elliptic equations
with VMO coefficients.

1. INTRODUCTION

Let 2 be an open set of R", p € (1,00), and A € (0,n). For f € Ll (),

let )
P _ P
ey = s = [ Py
B, (z)NQ

and define LP*(Q) to be the set of measurable functions f such that
[ fllr.5 () < 00, where, and in what follows, B, (z) = {y € R" : [z —y| < p}
for any p > 0. The space LP**(Q) is usually called the Morrey space.

Assuming f € LP*(£2), the main purpose of this paper is to investigate
the regularity in the Morrey space of the strong solution to the following
Dirichlet problem on the second-order elliptic equation in nondivergence
form:

n

Lu= ) aij(@)uze, =f ae in Q
=1 (1.1)

u=20 on 09,

where x = (z1,...,7,) € R" Q is a bounded domain C*! of R"; the
coefficients {aij}?,j:l of L are symmetric and uniformly elliptic, i.e., for
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some v > 1 and every £ € R™,

n

a;j(z) = azi(z) and v '[E? < Z aij(2)6:€; < vlE)? (1.2)

4,j=1

with a.e. z € Q. Moreover, we assume that a;; € VMO(Q), the space of
the functions of vanishing mean oscillation introduced by Sarason in [1].

Our method is based on integral representation formulas established in
[2, 3] for the second derivatives of the solution u to (1.1), and on the theories
of singular integrals and linear commutators in Morrey spaces. In fact, in
82, we will establish the boundedness in Morrey spaces for a large class
of singular integrals and linear commutators. From this, we can deduce
the interior estimates and boundary estimates for the solution to (1.1);
therefore, by a standard procedure, we can obtain its whole estimates in
Morrey spaces (see [3] and [4]). This will be done in §3.

It is worth pointing out that part of the interior estimates for the solution
0 (1.1) have been obtained in [5]. Here, we obtain the whole interior esti-
mates in a different way, which seems much simpler than the corresponding
ones in [5].

2. SINGULAR INTEGRALS AND LINEAR COMMUTATORS

First, we have the following general theorem for the boundedness in Mor-
rey spaces of sublinear operators.

Theorem 2.1. Let p € (1,00) and XA € (0,n). If a sublinear operator T
is bounded on LP(R™) and for any f € L'(R™) with compact support and

x & supp f,
T« / - (2.1)

then T is also bounded on LP*(R™).

Proof. Fix x € R™ and r > 0. Write

F@) = f(Y)XBor () (Y +Zf YIXB, 1, (2)\Bys, () (Y ka

k=1

Thus, by the LP(R™)-boundedness of T" and (2.1), we have

(/ ITf(Z)Ide)l i( [ s >|pdz)1/ps

B(z) - By.(z)



REGULARITY OF SOLUTIONS TO ELLIPTIC EQUATIONS 427

= If(y)] P
< ¢l folle n—|-c§ { < dy) dz} <
pllJollLr(Rn) 2 / /

|z —y|"
Br(z)  Byk+1,.(z)\Byk,.(z)

oo

N T.n/p 1/p
Scpf“/p||f||LM<Rn>+CpZW< / If(y)lpdy) <

k=1 Bykt1,.(w)
= 1
< Cpr)\/pr”LPA(R") + CprA/p||fHLP=A(Rn) Z FYICESyY <
k=1

< Cpr/\/p\|f||Lw(Rn)-
Therefore, ||Tf| prr@ny < cllfllLer@ny. O

Condition (2.1) can be satisfied by many operators such as Bochner—Riesz
operators at the critical index, Ricci—Stein’s oscillatory singular integral,
C. Fefferman’s singular multiplier, and the following Calderén—Zygmund
operators.

Definition 2.1. Let k: R™\ {0} — R. We say that k(x) is a constant
Calderén—Zygmund kernel (constant C' — Z kernel) if

(i) ke C=(R"\ {0});

(ii) k is homogeneous of degree —n;

(iii) [y k(x)do = 0, where, and in what follows, ¥ = {z € R" : |z| = 1}.

Definition 2.2. Let Q be an open subset of R™ and & : Q x {R"\ {0}} —
R. We say that k(z) is a variable C' — Z kernel on  if

(i) k(z,-) is a C — Z kernel for a.e. x € €

(i) max(y <o |89 /029 ), 2)l| e sy = M < 0.

Let k£ be a constant or a variable C' — Z kernel on 2. We define the
corresponding C' — Z operator by

Tf(e) = po. [ o —9)fw)dy o Ti@) = po. [ Kz )1 dy
R Q
Obviously, in these cases it satisfies the conditions of Theorem 2.1; see
Theorems 2.10 and 2.5 in [2]. Thus we have the following simple corollary.

Corollary 2.1. Let p € (1,00) and A € (0,n). If k is a constant or
a variable C — Z kernel on R™ and T is the corresponding operator, then
there exists a constant ¢ = c(n,p, A\, k) or ¢ = ¢(n,p, \, k, M) such that for

all f € LPAMR™), |Tfllpoa@ny < (0, A k)| fll Lo @ny -

From this corollary, by a proof similar to that of Theorem 2.11 in [2] (see
also Theorem 2.2 in [5]), we obtain the following corollary.
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Corollary 2.2. Let p € (1,00), A € (0,n), and Q be an open subset
of R™. If k is a variable C — Z kernel on Q and T is the corresponding
operator, then there exists a constant ¢ = c(n,p, \,k, M) such that for all
fe L),

1T fll Loy < e, X B) fll Lor(a)-

Now, let us consider the boundedness on Morrey spaces of the linear
commutator [a,T] defined by [a,T]f = T'(af)(z) — a(z)Tf(x). First, we
recall the definitions of the spaces BMO and VMO. For the properties of
these spaces, we refer to [1], [6], and [7].

Definition 2.3. Let 2 be an open subset of R™. We say that any f €
L{ .(©) is in the space BMO(Q) if

1
sup

o0 weﬂm / If(y) = fB,)neldy = || fll« < oo,

B,(z)NQ

where fp (2)no is the average over B,(z) N of f.
Moreover, for any f € BMO(Q) and r > 0, we set

1
sup

s e [ W) fonaldy=ni). (23

B, (z)NQ2
We say that any f € BMO(Q) is in the space VMO(Q) if n(r) — 0 as
r — 0 and refer to n(r) as the VMO modulus of f.

Theorem 2.2. Letp € (1,00), A € (0,n) and a € BMO(R™). If a linear
operator T' satisfies (2.1) and [a,T) is bounded on LP(R™), then [a,T) is also
bounded on LP*(R™).

Proof. For any x € R™ and r > 0, we write f as in (2.2). By the LP-
boundedness of [a,T] and (2.1), we obtain

</|[a,T]f(z)|de)1/p§’§)< / ‘[Q,T]fk(z)|pdz)1/p<

By (z) 7 Br(z)
< cllfollLemny +

+Ci{ / < / a(y)G(Z)Ilf(y)ldy>”dz}1/p<

— |z —y|"

Br(z)  Bykt1,.(2)\Bak,.(z)

< erMP|| fll o gy +

+C§(2k1T>n{ [ (] ww-eomwia) e

B.(z) Bgk+1,.(x)
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For any o > 0, we set

Bo(z)

By the John—Nirenberg’s lemma on BMO functions and the fact that
lagk+1, — ar| < c(n)(k + 1)||a||« (see [7]), we obtain

{/ ( / |a(y)a(z)||f(y)|dy)pdz}1/p§

Br(z) Byk+t1,(x)
1/p
<{ [ l—arat [ i
Br(z) Bykt1,.(w)

e/ / lay) — ar| | £(y)| dy <
sz+1r(1)

< e PPN la|| || || Lo gmy +

s |a<y>—ar|p’dy)l/pl( / If(y)l”dy>l/p§

B,ki1,.(2) Byk+1,. ()
< CTn+>‘/p2k{n(1_l/p)+/\/p} ||GH* Hf”Lp,A(Rn)C?“n+/\/p2k{n(1_1/p)+/\/p} «

! , 1/p’
|Bars1, ()] - 1P d
X { ( | Bor+1,-(2)] / la(y) — agr+1,| y) n

Byit1,.(z)
Hagesnr — ar|}||f||Lv=A(Rn) <

< ek + 1) tApRR =YD g £l Lo ey
where, and in what follows, 1/p 4+ 1/p" = 1. Thus,

(/ Ha,T}f(z)mz)l/p <

By.(z)

A/p k1 A/p
< o lalu | flornd 1+ Y siemeayzs (< e lallollfllzon .
k=1

Therefore
@, T)fllzor@ny < cllall«llfllLea@ny- O

From this theorem and Theorems 2.7 and 2.10 in [2], we easily deduce
the following corollary.
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Corollary 2.3. Let p € (1,00), A € (0,n), and a € BMO(R"™). If k
is a constant or a variable C — Z kernel on R™ and T the corresponding
operator, then there exists a constant ¢ = c(n,p, \, k) or ¢ = ¢(n,p, A\, k, M)
such that for all f € LPA(R™),

ll[a, T]f||Lw(Rn) < C||a||*||f||LM(Rn)-

From this and the extension theorem of BMO(Q)-functions in [8, page
42 and 54], by a procedure similar to Theorem 2.11 in [2] and Theorem 2.2
in [5], we can obtain the following corollary.

Corollary 2.4. Let p € (1,00) and A € (0,n). Suppose § is an open
subset of R™ and a € BMO(R™). Ifk is a variable C — Z kernel on Q and T
the corresponding operator, then there exists a constant ¢ = c(n,p, A\, k, M)
such that for all f € LPA(Q),

la, T1fllzrr) < cllallllfllzea )

We can also have the following local version of Corollary 2.4; see Theorem
2.13 in [1] for the proof.

Corollary 2.5. Let p € (1,00) and A € (0,n). Let Q be an open subset
of R™, a € VMO(Q), and n be as in (2.3). If k is a variable C — Z kernel
on Q and T the corresponding operator, then for any € > 0, there exists
positive pg = po(e,n) such that for any ball B, with the radius r € (0, pg),
B,NQ=Q, #3 and all f € LPA(Q,),

e, T)fllLe ey < cellfllzena,s

where ¢ = c(a,p, \, k) is independent of f and €.

It is worth pointing out that Corollaries 2.4 and 2.5 have been obtained
by Fazio and Ragusa in [5] in a different way. It seems that our method is
much simpler than theirs.

Let R} = {z = (¢/,2,) : @ = (21,...,2p-1) € R" 1z, > 0}. To
establish the boundary estimates of the solutions to (1.1), we need to study
the boundedness on L’“‘(Ri) of some other integral operators. First, we
have the following general theorem for sublinear operators.

Theorem 2.3. Let p € (1,00), A € (0,n), and T = (¢, —x,) for x =
(2", 2,) € RY. If a sublinear operator T' is bounded on LP(R'}) and for any
f € LYR) with compact support and x € R,

1f(y)l
) =y

then T is also bounded on LP(R™).

Tf(x) <c dy, (2.4)
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Proof. Let z € R" and o > 0. In what follows, we set Bf (2) = B, (z) NR’.
We consider two cases.

Case 1. 0 < z, < 20. In this case, we write

F@) = fxs, +Zf X5, (0B, (2 fo (2:5)

Therefore, by LP-boundedness of T and (2.4), we obtain

(/ ITf(z)Ipdz>l/ps 3 ( / |ng(:c)|pdx>1/p§

BE(2) =3 B

e P 1/p
< cf| fsll e ) +CZ{ / ( / |%|,f_(y;||n dy) dx} <

= UBi) Bl (\BY,_(2)

oo P 1/p
Sca)‘/p”f”LP:*(Ri)‘f‘C;(in)n{ / ( / |f(y)dy) df} <

Bi(x) Bl (2

— 1
< Cg)\/p||f||LP=*(R1){1 + Z W’} < CU/\/p||fHLP=A(R1)7
=1

which is the desirable estimate.

Case 2. There exists £ € N such that 2¢0 < z,, < 215, In this case, we

write

fly) = Jc(?J)XB;Jr4 (= )(y) + Z f(y)XB:HkHa(z)\B;HHSG(z)(y) =
k=1
=>" fuly). (2.6)
k=0

From (2.4), it follows that

(J mora)"se{ [ (] paya)”s

B (2) BE(z) Bl (2)

+c’§{ / ( / |:?|§f—(y;|n dy>pdx}1/p<

+ + +
Bi(2)  Bfyipia, (O\Blriips, ()
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S(sznn{ / ( / |f(y)|dy)pdx}l/p+

Bi(=) B, ()
00 1 P 1/p
g [ ([ o)) s
h=1 Bi(2) Bl ()

1 = 1
A/ - s A/
<co p||f|LT")‘(]Ri){2[(n_)\)/p + I; 2(€+k)(n—>\)/p} <co p”f”LT’v)‘(Ri)a
by noting that ¢ € N and A < n. From this, it is easy to deduce Theorem
23. O

To state the following corollary, we need more notation. Let a(z) =
{ain(x)}_, be as in (1.2) and define

2x,
Ann(Y)

T(x,y) =z — a(y).

Then, as a simple corollary of the above Theorem 2.3 and Lemma 3.1 in [3],
we have

Corollary 2.6. Let p € (1,00), A € (0,n), and Q be an open subset of
R%. If k is a variable C — Z kernel on Q, and for x € Q we define

Tf(z) = / k(e T(x) — 1) (y) dy

Q

with T'(z) = T(x, x), then there exists a constant ¢ = ¢(p, \, v, k) such that
for all f € LPA(Q),

1T f[ex ) < el fllzeao)-
For the linear commutator on R’} , we have

Theorem 2.4. Let p € (1,00), A € (0,n), and a € BMO(RY). If a
linear operator T satisfies (2.4) and [a,T] is bounded on LP (R} ), then [a, T]
is also bounded on LP*(R™).

Proof. Let z € R} and o > 0. Similarly to the proof of Theorem 2.3, we
also consider two cases.

Case 1. 0 < z, < 20. In this case, we write f as in (2.5). We then have

- /p 0 ~ 1/p
(/I[avT]f(x)l”dx> <;< / |[a,T]fj(x)|pdx> <

B (2) Bt (2)



REGULARITY OF SOLUTIONS TO ELLIPTIC EQUATIONS 433

< cllallllfsll Loy +

+c§:{ / ( / la(y) |%ci(z)7lllf(y)ldy>pdx}1/p<

=4 UBi ) BY,. (0B ()

< caPllallll fllo e +

+§_°: il [ (] 1w -e@liola) o) <

Bi(z) Bl (2)
- 1 1/p
<« Plal. My + o3 g ([ oo —a@Pan)
= B} (2)
([ rwla)+
B;rj+1g(z)
N P 1/p
1
+c;(2ﬂa)"{ /( /'a(y)—aallf(y)ldy) dx} <
- Bf(z) B}, (2
A/p \/p > 1
< co™P||al|. ||fHLm(]R)+ca lla|l ||fHLpA(Rn)(Zm)+
j=4

1/p’
(20N f o a0 /p( [l - al dy) <

+
Bjit1,(2)

JFCZ

oo

n 1 ] n/p’
< e lall )| fll o) + co /p||f||Lp,A<R¢>{ZW<%> Y x
Jj=4

{< 1 / / 1/pl
X la(y) — agitiq|? dy) + |agit1, — aol] } <
|B;j+1g(z)| N

Bjis1,(2)
< co™Plalll| 1l orrny +
> 1
+CU)\/p||f||LT’>>\(Rn) Z W{HGH* + |a/2j+1o' - aUl} S

J_
o0

J+1
< co™Plallo | fllrs e >{ZM} < e Plal-Mlle e
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where for any r > 0 we set

1

ar = m / a(y) dy

Bf ()
and use the fact that A < n and |agi+1, — ao| < ¢(n)j||al|.. This estimation

is the expected one.

Case 2. There exists £ € N such that 2¢0 < z,, < 2¢*1¢. In this case, we
write f as in (2.6). We then have

(/ |[a,f1f<x>pdx>l/ps 3 (/ |[a,f1fk<x>|pdx)1/ps

B (2) M= TBi )

gc{ / < / "(y)|;‘i(ﬁl'f<y)' dy)” dx}”ﬁ

Bi(z) B, (2)

+,§{ / / ja(y) —a(@)||f(y) dy)pdx}”p .

; . N |z —yl"
BE()  Biiirea, O\Bhiria ()

<@l [ ( / |a<y>—a<x>||f<y)|dy>pdx}1/p+

Bi(2) Bl (2

+§<2+1”0>{ /( / |a(y)_a(x)|If(y)|dy>pdx}1/p<

B (z) B 4, ()
> 1
< co”*’iia*nfimm{ > W} < e Plalll fllzray).
k=1

since £ € N and A < n. Here, in the next to the last inequality, we used a
computation technique similar to Case 1. By the above estimate we easily
finish the proof of Theorem 2.4. [

We can also obtain the local version of Theorem 2.4; see Theorem 2.13
in [2] for the proof.

Corollary 2.7. Let p € (1,00), A € (0,n), and for any o > 0, Bf (z) =
{(#",2,) € R" : |x| < 0,2, > 0}. Let a € VMO(R?Y) and n be its VMO
modulus. If k is a variable C — Z kernel on R} and T is as in Corollary
2.6, then for any € > 0, there exists a positive pg = po(e,n) such that for
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any T € (03100) and f € Lp,)\(B;r)’

||[‘17T]f||Lp,A(B:f) < CE||f||Lp,A(B:f)

with ¢ = ¢(v, p, \, k) independent of f, e, and r.

3. EvrvuipTic EQUATIONS WITH VMO COEFFICIENTS

In this section, we will establish the regularity of the solution to (1.1).
First, we have the following definition.

Definition 3.1. Let p € (1,00), A € (0,n), and 2 be an open subset of
R™. f € Ll () is said to belong to the Sobolev-Morrey space W2LP:*((2)
if and only if u and its distributional derivatives, us,, Uz, (4,5 =1,...,n)
are in LP*(Q). Moreover, let [|ullw2rox @) = [[ullpea )+ Doy |t
+ ZZj:l Hul’zwg HLPJ\(Q)‘

We also assume that f € W2 _LPA(Q)if f € W2LPA () for every Q' CC
Q.

Now, let 2 be an open bounded subset of R™ with n > 3 and 092 € C1,

n 82
L= Z a;;(x) 90,07,
ij=1

with a;;’s satisfying (1.2). We also assume that a;; € VMO(Q). Since
for each function in VMO(Q) there is an extension to R™ with the VMO
modulus controlled by its original one (see [8, page 42 and 54]), without
loss of generality, we may assume that a;;’s belong to VMO(R™). Let
f e LPMNR), pe(l,00) and A € (0,n). We are interested in the following
Cauchy problem:

Lr:2 ()

{Lu:f a.e. in € (3.1)

u e W2LPAQ) N WP (Q).

Note that € is bounded; therefore f € LP*(Q) implies f € LP(f2). By the
results in [3], we know that for f € LP(Q) with p € (1,00) and \ € (0,n),
(3.1) has a unique solution u € W22(Q) N W,*(Q) satisfying

[ullw2r@) < cllfllre@), (3.2)

where ¢ is independent of f. Our main interest here is to improve (3.2) into

Hu”W?LPv\(Q) < C”fHLPv*(Q)- (3.3)

By a standard procedure, the proof of (3.3) consists in establishing the
interior and boundary estimates of the solution to (3.1); see Theorems 4.4,
4.1, and 4.2 in [3]. Indeed, by a similar proof to Theorem 4.2 in [2] and
Theorem 3.3 in [5], we can prove the following interior estimate.
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Theorem 3.1. Let L satisfy the above assumption andn= (37 _; n3;)'/?
where n;; is the VMO modulus of a;j in Q. Let A € (0,n), ¢, p € (1,00),
q<p, f€LPNQ), uecW2LINQ) ﬂWOLq(Q), and Lu = f a.e. in Q. Then
u € W2 _LPA). Moreover, given any ¥ CC Q, there exists a constant
¢ =c(n,p, \, v, dist(Y',00),n) such that

llullw2rrx @) < C{||U||LP,A(Q) + Hf||LM(Q)}~

The case ¢ = p of Theorem 3.1 is just Theorem 3.3 in [5]. See [5] for the
proof of Theorem 3.1, and we omit the details here. To finish the proof of
(3.3), we still need to establish the following boundary estimate.

Theorem 3.2. Let L, X\, q, p, and n be as in Theorem 3.1. Let f €
LPMQ), u € W2LOMNQ) N W 9(Q), and Lu = f a.e. in Q. Then u €
W?2LPA(Q) and there exists a constant ¢ = c(n, p, \, v, 00, 1) such that

ullw2rea @) < C{||U||LP»A(Q) + ”fHLPv*(Q)}-

To prove Theorem 3.2, we need to introduce more notation. We let
WZ2P(B) be the closure in W?*? of the subspace

C

o = {u : u is the restriction to B

of a function in C{°(B)) and u(z’,0) = 0},

where, and in what follows, B, = {z € R" : |z| < o} and B} = {(2/,x,) €
" |z| < o and x, > 0} for any ¢ > 0. We also make the following
assumption and refer to it as assumption (H).

Let n >3, b; €e VMOR"), i,j=1,...,n,
bij(l‘) = bji(.’L‘), i,j = 1,...,77,, a.e. in B;_.

There exists p > 0 such that for all 5 e R"”, (H)
pER <300 by (0)&€y < plél?, ace. in B
Let L
~ U 52
and

1
Hot) = (n — 2)wn (detb;;)1/2 ( Z Bilw

1,5=1
o 2
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for a.e. x € B} and all ¢ € R™ \ {0}, where B;;’s are the entries of the
inverse of the matrix {b;;}; j=1,.. n. We also set b(x) = {b;n ()}, and

22,
bn (Y)
By a covering and flattening argument, the proof of Theorem 3.2 can
be reduced to establishing the estimate in LP-A(B;) of ug,,, with u €
W24(B}) and Lu € LP*(B), where 1 < ¢ < p < o0 and X € (0,n).
To do so, we need the following key lemma established in [3, page 847].

T(x,y) ==z — b(y).

Lemma 3.1. Assume (H) and let w € W2P(Bf) withp € (1,00). Then

= p.v. / Lij(z,z— y){

BY

Uz, () =

b () — b () ek () + Zu<y>} dy

+Lu(z) [ Tilz,y)t; do, + Lij(z), (3.4)

= [T 70 =] 3 o) — bl ) + L) o

et hk=1

fori=1,...,n—1,

and

In(e) = [ 32 B@)Bu@)Tan(a, (@) = )+ ) dy
B

L Lk=1
o

in the formulas above T(x) = T(xz;x), B;(x) is the i-th component of the
vector B(z) = T(en;x) with e, = (0,...,0,1), t; is the j-th component of
the outer normal to the sphere %, and in the curly brackets there is always
the same expression as in the first case.

Now, to finish the proof of Theorem 3.2, we only need to prove the
following theorem.
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Theorem 3.3. Assume (H). Let A € (0,n), ¢,p € (1,00), and ¢ < p.
Setnp=(> ﬁfj)lm, where 1;; is the VMO modulus of b;;, and
1

1,J=
[}

s,
M= max max G?Fij(x’t)H

1,5=1,...,n |a|<2n

Leo(BF x%)
Then there exists a positive number po = po(n,q,p, M, 1,7, \), po < o, such
that for any r € (0, po) and any v € W29(B}Y) with Lu € LP*(B;}), we have

u € W2LPA(B;). Furthermore, there exists a constant c=c(n,p, A\, M, j1,7)
such that

||Uzi:r:j||LpA(Bj') < C”LUHLPA(Bj')' (3.5)

Proof. Set for i,j,h,k=1,...,n

Sijnk(f)(x) = p.v. / Lij(x,x —y)(bni(z) — bar(y)) f (y) dy,

B}
and fori,j=1,...,.n—1, hk=1,...,n

Sl f)(x) = / Ty (2, T(@) — ) (i) — b)) £ () dy,

BY

fori=1,....n—1, h,k=1,...,n
Sons (D) = [ (30 Tss(a.T@) = 1) By () (s ) — b () )y,

Bt

T

and, finally, for h,k=1,...,n

= [ (3 o7 @) - BBy (@)) tnlz) ~ bra0) 1)

Sy Ba=l
where r € (0,0] and f € L¥*(B;).

By Lemma 3.1 in [2] and Corollaries 2.5 and 2.7, we can fix pg so small
that

Z 1Sijne + Sijnkll <1,
irj,hk

where the norm of operators S;;ni, + §ijhk is the norm in the space of linear
operators from L**(B;}) into itself if 7 € (0, pg) and s € [g, p].
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Consider u € W2P(B;}) with Lu € LPMBF), r € (0, po) and set

hij; = p.v. / Lij(z,z — y)zu(y) dy + zu(x) / Iz, t)t; doy + Tij (2),

B [t]=1
where
[ Tij(z,T(x) — y)Lu(y)dy for i,j=1,...,n—1,
B}
i, J (3 Tiele, T(@) = y) Be(w) ) Luy) dy
lij(z) = { BF =1
for i=1,....,.n—1, j=n,
J (% T, T(@)=y)Be(@)B(@)) uly) dy for i=j=n.
ij lm=1

From Corollary 2.6, we easily deduce that h;; € LP*(B;1).
Consider w € [LP*(B;)]"" and define Tw : [LPX(BH)]™
by setting

— (LA B

n
Tw = ((Tw)ij)ij=1,.n = ( Z (Sijnk + Sijnk)(wis) + hij>ij71 .
Pyt J=1,...n

The operator T is a contraction on [LPA(B;F )]”2 and thus has a unique fixed
point w. Since, by (3.4), {ts,z, }i,j=1,...,n is also a fixed point in [LeX (B
and LPA(B;t) C L4 (B;') if ¢ < p, the uniqueness of the fixed point implies
that ug,e, = w;; € LPMB}F) fori,j =1,...,n. Then (3.5) can be deduced
from (3.4), and Corollaries 2.2, 2.4, 2.6, and 2.7. O
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