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TENSOR PRODUCTS OF NON-ARCHIMEDEAN
WEIGHTED SPACES OF CONTINUOUS FUNCTIONS

A. K. KATSARAS AND A. BELOYIANNIS

Abstract. It is shown that the completion of the tensor product of
two non-Archimedean weighted spaces of continuous functions is topo-
logically isomorphic to another weighted space. Several applications
of this result are given.

1. Introduction

Weighted spaces of continuous functions were introduced in the complex
case by L. Nachbin in [1], and in the vector case by J. Prolla in [2]. Many
other authors have continued the investigation of such spaces. W. H. Sum-
mers has shown in [3] that if X and Y are locally compact topological spaces
and U, V Nachbin families on X, Y , respectively, then CU0(X) ⊗ CV0(Y )
is topologically isomorphic to a dense subspace of CW0(X × Y ), where
W = U × V = {u× v : u ∈ U, v ∈ V } and (u× v)(x, y) = u(x)v(y).

The p-adic weighted spaces of continuous functions were introduced by
J. P. Q. Carneiro in [4]. Several of the properties of these spaces were studied
by the authors in [5] and [6]. In this paper we show that if X,Y are Hausdorff
topological spaces, not necessarily locally compact, U, V Nachbin families
on X, Y respectively and E a non-Archimedean polar locally convex space,
then CU0(X) ⊗ CV0(Y, E) is topologically isomorphic to a dense subspace
of CW0(X × Y,E), where W = U × V . We give several applications of this
result. We also show that on the space Cb(X,E) of all bounded continuous
E-valued functions on X, the strict topology defined in [7] is the weighted
topology which corresponds to a certain Nachbin family on X.

2. Preliminaries

Throughout this paper, K will stand for a complete non-Archimedean
valued field whose valuation is nontrivial. By a seminorm, on a vector
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space E over K, we mean a non-Archimedean seminorm. Let E be a locally
convex space over K. The collection of all continuous seminorms on E will
be denoted by cs(E). The algebraic and the topological duals of E will be
denoted by E∗ and E

′
, respectively. For a subset B of E, B0 denotes its

polar subset of E
′
. A seminorm p on E is called polar if

p = sup{|f | : f ∈ E∗, |f | ≤ p},

where |f | is defined by |f |(x) = |f(x)|. The space E is called polar if its
topology is generated by a family of polar seminorms. If E,F are locally
convex spaces over K, then E ⊗F denotes the projective tensor product of
these spaces. By E ̂⊗F we denote the completion of E ⊗ F . Also, by p⊗ q
we denote the tensor product of the seminorms p and q. For all unexplained
terms concerning non-Archimedean spaces we refer to [8].

Next we recall the definition of non-Archimedean weighted spaces. Let
X be a Hausdorff topological space and E a locally convex space. The
space of all continuous E-valued functions on X is denoted by C(X,E). By
Cb(X,E) and C0(X, E) we denote the spaces of all members of C(X,E)
which are bounded on X or vanish at infinity on X, respectively. In case
E = K, we write C(X), Cb(X) and C0(X) instead of C(X,K), Cb(X,K)
and C0(X,K).

A Nachbin family on X is a family V of non-negative upper-semiconti-
nuous functions on X such that:

(1) For all v1, v2 ∈ V and any a > 0 there exists v ∈ V with v ≥ av1, av2

(pointwise) on X.
(2) For every x ∈ X there exists v ∈ V with v(x) > 0.
Let now p ∈ cs(E) and v ∈ V . For an E-valued function f on X, we

define
qv,p(f) = ‖f‖v,p = sup{v(x)p(f(x)) : x ∈ X}.

In case f is K-valued, we define

qv(f) = ‖f‖v = sup{v(x)|f(x)| : x ∈ X}.

Also, for an R-valued or K-valued function f on X, we define

‖f‖ = sup{|f(x)| : x ∈ X}.

The weighted space CV (X, E) is defined to be the space of all f in C(X, E)
such that qv,p(f) < ∞ for all v ∈ V and all p ∈ cs(E). Note that qv,p is
a non-Archimedean seminorm on CV (X,E). We will denote by CV0(X,E)
the subspace of CV (X, E) consisting of all f such that the function x 7→
v(x)p(f(x)) vanishes at infinity on X for each v ∈ V and each p ∈ cs(E).
On CV (X,E) and on CV0(X,E) we will consider the weighted topology τν
generated by the seminorms qv,p, v ∈ V, p ∈ cs(E). When E = K, we will
simply write CV (X) and CV0(X) instead of CV (X,K) and CV0(X,K).
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3. On the Strict Topology

For a locally compact zero dimensional topological space X and a non-
Archimedean normed space E, J. Prolla has defined, in [9], the strict topol-
ogy β on Cb(X, E) as the topology defined by the seminorms

f 7→ ‖φf‖ = sup{‖φ(x)f(x)‖ : x ∈ X},

where φ ∈ C0(X). For an arbitrary topological space X and a locally convex
space E, the strict topology β0 on Cb(X, E) was defined in [7]. This is the
topology generated by the seminorms

f 7→ ‖φf‖p = sup{|φ(x)|p(f(x)) : x ∈ X}

where p ∈ cs(E) and φ belongs to the family B0(X) of all bounded K-valued
functions f on X which vanish at infinity. As shown in [7], β0 = β when X
is locally compact zero-dimensional. In this section we will show that β0 is
a weighted topology.

Let X be a Hausdorff topological space and let B0u(X) denote the family
of all φ ∈ B0(X) for which |φ| is upper-semicontinuous.

Lemma 3.1.
(1) If V = |B0u(X)| = {|φ| : φ ∈ B0u(X)}, then V is a Nachbin family

on X.
(2) For each φ ∈ B0(X) there exists ψ ∈ B0u(X) such that |φ| ≤ |ψ|.

Proof. (1) If φ1, φ2 ∈ B0u(X) and if φ is defined on X by

φ(x) =
{

φ1(x) + φ2(x) if |φ1(x)| 6= |φ2(x)|
φ1(x) otherwise,

then |φ| = max{|φ1|, |φ2|} and φ ∈ B0u(X). It follows now easily that V is
a Nachbin family on X.

(2) Let φ ∈ B0(X) and choose λ ∈ K, 0 < |λ| < 1. Without loss
of generality we may assume that ‖φ‖ < |λ|. There exists an increasing
sequence (Dn) of compact subsets of X such that {x ∈ X : |φ(x)| > |λ|n} ⊆
Dn. Let φn denote the K-characteristic function of Dn. For each x ∈ X,
the series

∑∞
n=1 λnφn(x) converges in K. Define ψ on X by

ψ(x) =
∞
∑

n=1

λnφn(x).

If x ∈ Dn \ Dn−1, then |ψ(x)| = |λ|n. Given ε > 0, choose n such that
|λ|n < ε. Now {x ∈ X : |ψ(x)| > ε} ⊆ Dn and so ψ ∈ B0(X). Also, for
each ε > 0, the set A = {x : |ψ(x)| < ε} is open. Indeed, if |λ| < ε, then
A = X. Assume ε ≤ |λ| and let κ be such that |λ|κ+1 < ε ≤ |λ|κ. If x0 ∈ A,
then x0 /∈ Dκ. Also, for x /∈ Dκ, we have |ψ(x)| ≤ |λ|κ+1 < ε and so x ∈ A.
Thus A = X \Dκ, which shows that A is open. Finally, |λφ| ≤ |ψ|. Indeed,
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let φ(x) 6= 0. If x ∈ D1, then |ψ(x)| = |λ| ≥ |λφ(x)|. If x ∈ Dn+1 \ Dn,
then |φ(x)| ≤ |λ|n and so |ψ(x)| = |λ|n+1 ≥ |λφ(x)|.

Theorem 3.2. If V is as in the preceding Lemma, then

CV (X, E) = CV0(X, E) = Cb(X, E) (algebraically)

and the weighted topology on CV (X,E) coincides with the strict topology β0

on Cb(X, E).

Proof. It is clear that Cb(X,E) ⊆ CV0(X,E). On the other hand, assume
that some f ∈ CV (X,E) is not bounded. Then, for |λ| > 1, there ex-
ist p ∈ cs(E) and a sequence (xn) of distinct elements of X such that
p(f(xn)) > |λ|2n for all n. Let φn be the K-characteristic function of the set
{x1, . . . , xn}. As in the proof of the preceding Lemma, we get that the func-
tion φ =

∑∞
n=1 λ−nφn is in B0u(X) and |φ(xn)| = |

∑

κ≥n λ−κφκ(xn)| =
|λ|−n. Thus supn |φ(xn)|p(f(xn)) = ∞ contradicts the fact that f ∈
CV (X, E). This proves the first part. The second part follows from (2)
of the preceding Lemma.

4. Tensor Products of Weighted Spaces

Let X, Y be Hausdorff topological spaces and let U, V be Nachbin families
on X, Y respectively. Set W = U × V = {u × v : u ∈ U, v ∈ V } where
u × v is defined on X × Y by (u × v)(x, y) = u(x)v(y). It is easy to see
that W is a Nachbin family on X × Y . In the complex case, Summers
has shown in [3] that, for locally compact X, Y , CU0(X) ⊗ CV0(Y ) is
topologically isomorphic to a dense subspace of CW0(X×Y ). The following
is an analogous result in our case. Note that we do not assume that X,Y
are locally compact.

Theorem 4.1. Let U, V, W be as above and let E be a Hausdorff locally
convex space over K. Then:

(1) CU0(X) ⊗ CV0(Y, E) is topologically isomorphic to a subspace G of
CW0(X × Y,E);

(2) if X is zero-dimensional and E a polar space, then G is a dense
subspace of CW0(X × Y,E).

Proof. (1) Let

B : CU0(X)× CV0(Y,E) 7→ CW0(X × Y, E),

B(φ, f) = φ× f, (φ× f)(x, y) = φ(x)f(y).

Then B is bilinear. Let

T = B̃ : CU0(X)⊗ CV0(Y, E) 7→ CW0(X × Y, E)
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be the corresponding linear map. Then T is one-to-one. Indeed, assume
that for some h =

∑n
1 φκ⊗ fκ we have T (h) = 0. We claim that h = 0. We

prove it by induction on n. This is clearly true if n = 1. Assume that it is
true for n− 1. If some φκ 6= 0, say φn 6= 0, then fn is a linear combination
of f1, . . . , fn−1, i.e., fn =

∑n−1
κ=1 λκfκ. Thus

0 =
n

∑

1

φκ × fκ =
n−1
∑

1

φκ × fκ +
n−1
∑

1

λκ(φn × fκ) =
n−1
∑

1

(φκ + λκφn)× fκ.

By our inductive hypothesis, we have

0 =
n−1
∑

1

(φκ + λκφn)⊗ fκ =
n−1
∑

1

φκ ⊗ fκ +
n−1
∑

1

λκφn ⊗ fκ =

=
n−1
∑

1

φκ ⊗ fκ + φn ⊗
( n−1

∑

1

λκfκ

)

=
n

∑

1

φκ ⊗ fκ.

This proves that T is one-to-one. Also, if M = CU0(X) ⊗ CV0(Y, E) and
G = T (M), then T is a topological isomorphism from M onto G. Indeed,
let h ∈ M, u ∈ U, v ∈ V,w = u × v, p ∈ cs(E). For any representation
h =

∑n
1 φκ ⊗ fκ of h we have

‖Th‖w,p = sup
x,y

u(x)v(y) p
( n

∑

1

φκ(x)fκ(y)
)

≤

≤ max
κ

[(

sup
x

u(x)|φκ(x)|
)

·
(

sup
y

v(y)p(fκ(y))
)]

= max
κ
‖φκ‖u‖fκ‖v,p.

Thus ‖Th‖w,p ≤ (‖ · ‖u ⊗ ‖ · ‖v,p) (h). On the other hand, given 0 < t < 1,
there exists a representation h =

∑m
κ=1 φκ ⊗ fκ of h such that {f1, . . . , fm}

is t-orthogonal with respect to the seminorm ‖ · ‖v,p. Now, for any x ∈ X,
∥

∥

∥

∥

m
∑

κ=1

φκ(x)fκ

∥

∥

∥

∥

v,p
≥ t max

κ
|φκ(x)|‖fκ‖v,p

and so

‖Th‖w,p = sup
x

[∥

∥

∥

∥

m
∑

1

φκ(x)fκ

∥

∥

∥

∥

v,p

]

u(x) ≥ t max
κ

sup
x
|φκ(x)|‖fκ‖v,pu(x) =

= t max
κ

‖φκ‖u ‖fκ‖v,p ≥ t (‖ · ‖u ⊗ ‖ · ‖v,p) (h).

It follows that ‖Th‖w,p = (‖ · ‖u ⊗ ‖ · ‖v,p) (h) and so T : M 7→ G is a
topological isomorphism.

(2) Assume that E is polar and X zero-dimensional.
Let f ∈ CW0(X × Y, E), u ∈ U, v ∈ V, w = u × v, ε > 0 and p ∈ cs(E),

where p is polar. The set D = {(x, y) : u(x)v(y) p(f(x, y)) ≥ ε} is compact
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in X × Y . If D1, D2 are the projections of D on X, Y respectively, then
D ⊆ D1 ×D2. Let d > supx∈D1

u(x), supy∈D2
v(y).

The set Ω = {x ∈ X : u(x) < d} is open in X and contains D1. Since X
is zero-dimensional, there exists a clopen subset A of X with D1 ⊆ A ⊆ Ω.
For each x ∈ D1 there exists y ∈ Y with (x, y) ∈ D and so u(x) > 0. Also,
for x0 ∈ X, the map y 7→ f(x0, y) is in CV0(Y,E). Indeed, there exists
u1 ∈ U with u1(x0) 6= 0. Let v1 ∈ V , ε1 > 0 and q ∈ cs(E). We want to
show that the set B = {y ∈ Y : v1(y) q(f(x0, y)) ≥ ε1} is compact. The set
B1 = {(x, y) : u1(x)v1(y)q(f(x, y)) ≥ ε1u1(x0)} is compact. If y ∈ B, then
(x0, y) ∈ B1 and so B is contained in the projection of B1 in Y . Since B is
closed, it follows that B is compact. This proves that the map y 7→ f(x0, y)
is in CV0(Y, E).

Also, for each y0 ∈ Y and each x
′ ∈ E

′
, the function x 7→ x

′
(f(x, y0)) is

in CU0(X). Indeed, the seminorm q(x) = |x′(x)| is continuous on E. Choose
v1 ∈ V with v1(y0) 6= 0. For u1 ∈ U, let H = {x : u1(x)q(f(x, y0)) ≥ ε1}.
Then, H is contained in the projection on X of the compact set B2 =
{(x, y) : u1(x)v1(y) q(f(x, y)) ≥ ε1v1(y0)} and so H is compact, which
proves that the function x 7→ x

′
(f(x, y0)) is in CU0(X).

Let now x∈D1. There exists y0 ∈ Y with (x, y0)∈D. Since p(f(x, y0))>0
and p is polar, there exists x

′ ∈ E
′
with x

′
(f(x, y0)) 6= 0. Since the function

z 7→ x
′
(f(z, y0)) is in CU0(X), it is clear that there exists φx ∈ CU0(X) with

φx(x) = 1. By the compactness of D2, there exists a clopen neighborhood
Ax and 0 < εx < 1, with

d2 · εx · sup
y∈D2

p(f(x, y)) < ε,

such that

Ax ⊆ A ∩ {z : |φx(z)− 1| < εx} ∩ {z : u(z) < 2u(x)}

and p(f(z, y)− f(x, y)) < ε/d2 for all z ∈ Ax and all y ∈ D2. In view of the

compactness of D1, there are x1, . . . , xm in D1 such that D1 ⊆
m
⋃

1
Axi .

Let A1 = Ax1 , Aκ+1 = Axκ+1 \
(

κ
⋃

1
Axi

)

for κ = 1, . . . , m− 1.

Set φκ = φxκ · XAκ , fκ = f(xκ, ·) ∈ CV0(Y, E), where XAκ is the K-
characteristic function of Aκ. Then h =

∑m
1 φκ× fκ ∈ G. Moreover, for all

x ∈ X and y ∈ Y, we have

u(x)v(y) p(f(x, y)− h(x, y)) ≤ 2ε. (∗)

To show (∗) we consider three possible cases.
Case I: x /∈

⋃m
1 Aκ.

In this case, we have h(x, y) = 0, (x, y) /∈ D and u(x)v(y) p(f(x, y)) < ε.
Case II: x ∈ Aκ and y ∈ D2.
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Then

f(x, y)− h(x, y) = f(x, y)− φκ(x)fκ(y) =

= [f(x, y)− f(xκ, y)] + f(xκ, y)(1− φκ(x)).

Since
u(x)v(y) p (f(x, y)− f(xκ, y)) < d2 · ε/d2 = ε

and
u(x)v(y)|1− φκ(x)| p(f(xκ, y)) ≤ d2 · εxκ · p(f(xκ, y)) < ε,

we have that (∗) holds.
Case III: x ∈ Aκ, y /∈ D2.
In this case we have that (x, y) /∈ D and so u(x)v(y)p(f(x, y)) < ε. Also,

since x ∈ Aκ ⊆ Axκ , we have φκ(x) = φxκ(x) and |φxκ(x) − 1| < 1, which
implies that |φxκ(x)| = 1. Thus

u(x)v(y)|φκ(x)|p(f(xκ, y)) ≤ 2u(xκ)v(y)p(f(xκ, y)) < 2ε,

since (xκ, y) /∈ D. Thus (∗) holds in all cases and so ‖f − h‖w,p ≤ 2ε.

Remark 4.2. Looking at the proof of (2) in the preceding Theorem, we
see that instead of the hypothesis that E is polar we may just assume that
E
′

separates the points of E, i.e., for each s 6= 0 in E there exists x
′ ∈ E

′

with x
′
(s) 6= 0. Of course polar spaces have this property.

Taking as V the family of all constant positive functions on X, we get
that CV0(X, E) coincides with C0(X, E) with the topology τu of uniform
convergence.

Lemma 4.3. Considering on both C0(X, E) and C0(X, Ê) the topology
τu of uniform convergence, we have that C0(X, Ê) is the completion of
C0(X, E).

Proof. It is easy to see that C0(X, Ê) is complete. Let f ∈ C0(X, Ê) and
p ∈ cs(E). We will denote also by p the unique continuous extension of p to
all of Ê.

The set Z = {x ∈ X : p(f(x)) ≥ 1} is clopen and compact. There are
x1, . . . , xn in Z such that the sets

Zκ = {x ∈ X : p(f(x)− f(xκ))≤1} , κ = 1, . . . , n,

are pairwise disjoint and cover Z. For each κ, choose sκ ∈ E with p(sκ −
f(xκ)) < 1. Set

h =
n

∑

1

XAκsκ ∈ C0(X,E),

where Aκ = Zκ ∩Z. Note that the sets A1, . . . , An are clopen and compact
and their union is Z. Since ‖f − h‖p ≤ 1, the result follows.
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Combining Theorem 1 with Lemma 2, we get as a corollary the following

Theorem 4.4. Let X, Y be Hausdorff topological spaces and E a Haus-
dorff locally convex space. Then:

(1) C0(X)⊗ C0(Y, E) is topologically isomorphic to a subspace of
C0(X × Y, E);

(2) if X is zero-dimensional and E
′
separates the points of E (e.g. if E

is polar), then
C0(X)⊗̂C0(Y, E) ∼= C0(X × Y, Ê).

Lemma 4.5. Let X, Y be Hausdorff topological spaces, U = |B0u(X)|,
V = |B0u(Y )|, W = U×V , W1 = |B0u(X×Y )|. Then, the Nachbin families
W and W1 are equivalent.

Proof. Clearly, W ⊆ W1. On the other hand, let φ ∈ B0u(X × Y ) and
λ ∈ K, µ ∈ K with |µ| > 1, |λ| ≥ |µ|2. Without loss of generality, we may
assume that ‖φ‖ < |λ|−1. For each positive integer n, the set

Dn = {(x, y) : |φ(x, y)| ≥ |λ|−n}

is compact. Let An, Bn be the projections of Dn on X, Y , respectively. Set

φ1 =
∞
∑

n=1

µ−nXAn , φ2 =
∞
∑

n=1

µ−nXBn .

Since (An), (Bn) are increasing sequences of compact sets, we get (as in
the proof of Lemma 1) that φ1 ∈ B0u(X) and φ2 ∈ B0u(Y ). Moreover,
|φ| ≤ |λ|(|φ1| × |φ2|). Indeed, let (x0, y0) ∈ X × Y with φ(x0, y0) 6= 0,
and let n be the smallest of all integers κ with (x0, y0) ∈ Dκ. If m is the
smallest integer κ with x0 ∈ Aκ, then m ≤ n and |φ1(x0)| = |µ|−m ≥ |µ|−n.
Similarly, |φ2(y0)| ≥ |µ|−n and so

|φ1(x0)φ2(y0)| ≥ |µ|−2n ≥ |λ|−n.

Since (x0, y0) /∈ Dn−1, we have that

|φ(x0, y0)| < |λ|−(n−1) ≤ |λ||φ1(x0)φ2(y0)|.

This clearly completes the proof.

Combining the preceding Lemma with Theorems 3.2 and 4.1, we get

Theorem 4.6. Let X, Y be Hausdorff topological spaces and E a Haus-
dorff locally convex space. Then:

(1) (Cb(X), β0)⊗ (Cb(Y, E), β0) is topologically isomorphic to a subspace
G of (Cb(X × Y,E), β0) = M.

(2) If X is zero-dimensional and E
′
separates the points of E, then G is

a dense subspace of M.
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Let X, Y be Hausdorff topological spaces, U the Nachbin family of all
positive multiples of the R-characteristic functions of the compact subsets
of X, V = |B0u(Y )| and W = U × V. Let f ∈ EX×Y be such that the
restriction f |D to each compact subset D of X × Y is continuous.

Consider the following properties of f :
(1) For each compact subset D1 of X, the restriction of f to D1 × Y is

bounded.
(2) For any u ∈ U, v ∈ V, w = u× v, p ∈ cs(E), the function w · (p ◦ f)

vanishes at infinity on X × Y.
(3) ‖f‖w,p < ∞ for any w = u× v ∈ W and any p ∈ cs(E).

Then (1), (2), (3) are equivalent. Indeed, it is easy to see that (1) ⇒ (2) ⇒
(3). To prove that (3) ⇒ (1), assume that there exist a compact subset D1

of X and p ∈ cs(E) such that

sup{p(f(x, y)) : x ∈ D1, y ∈ Y } = ∞.

Let |λ| > 1 and choose a sequence (xn) in D1 and a sequence (yn) of distinct
elements of Y such that p(f(xn, yn)) > |λ|2n. Let wn be the K-characteristic
function of {y1, . . . , yn} and consider the function φ =

∑∞
n=1 λ−nwn. Then

v = |φ| ∈ V. If u is the R-characteristic function of D1, then w = u×v ∈ W
and

u(xn)v(yn)p(f(xn, yn)) = |λ|−np(f(xn, yn)) ≥ |λ|n

and so ‖f‖w,p = ∞, a contradiction. Thus (1),(2),(3) are equivalent.
Let now U, V, W be as above and denote by CWκ(X × Y, E) the vector

space of all f ∈ EX×Y such that:
(a) f |D×Y is continuous for each compact subset D of X.
(b) ‖f‖w,p < ∞ for each w ∈ W and each p ∈ cs(E).
If we consider on CWκ(X×Y, E) the weighted topology τw generated by

the seminorms ‖ · ‖w,p, w ∈ W, p ∈ cs(E), we have

Theorem 4.7. Let X, Y be zero-dimensional Hausdorff topological
spaces and E a Hausdorff locally convex space. If τc is the topology of
compact convergence, then:

(1) the map

ω : (C(X), τc)⊗ (Cb(Y,E), β0) 7→ CWκ(X × Y,E), f ⊗ g 7→ f × g,

is a topological isomorphism onto a dense subspace G of CWκ(X × Y, E);
(2) if Y is locally compact, then

(C(X), τc)⊗̂(Cb(Y, E), β0) ∼= CWκ(X × Y, Ê).

Proof. The mapping ω is a topological isomorphism onto G by Theorem 4.1,
since CW0(X×Y,E) is a topological subspace of CWκ(X×Y, E). To prove
that G is dense, let f ∈ CWκ(X × Y,E), w = u× v ∈ W and p ∈ cs(E).
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We may assume that u is the R-characteristic function of a compact
subset D1 of X. Given ε > 0, let D = {(x, y) : x ∈ D1, v(y)p(f(x, y)) ≥ ε}.
If D2 is the projection of D on Y , then D2 is compact, since D is compact,
and D ⊆ D1 × D2. The restriction h of f to D1 × D2 is continuous. Let
ε2 > 0 with ε2‖v‖ < ε. There are (xκ, yκ) ∈ D1 × D2, κ = 1, . . . , n, such
that the sets Aκ = {s ∈ E : p(s − f(xκ, yκ)) ≤ ε2} are pairwise disjoint
and cover h(D1 × D2). Set Bκ = h−1(Aκ). Clearly, Bκ is compact and
D1 ×D2 =

⋃

κ Bκ.
It is easy to see that if C, C1, . . . , Cn are clopen in X and F, F1, . . . , Fn

clopen in Y , then the set

C × F \
(

n
⋃

κ=1
Cκ × Fκ

)

is a finite disjoint union of sets of the form Z1 × Z2, with Z1 clopen in X
and Z2 clopen in Y.

There are pairwise disjoint sets O1 . . . , On in X × Y with Bκ ⊆ Oκ. For
(x, y) ∈ Bκ there are clopen neighbourhoods Mx, Dy of x, y respectively
such that Mx ×Dy ⊆ Oκ and p(f(x, y)− f(a, b)) ≤ ε2 for all a ∈ Mx ∩D1

and b ∈ Dy. In view of the compactness of Bκ, there are clopen sets
Aκ1, . . . , Aκmκ in X and clopen sets Dκ1, . . . , Dκmκ in Y such that the sets
Aκj ×Dκj , j = 1, . . . , mκ, are pairwise disjoint, cover Bκ, are contained in
Oκ and p(f(x, y)− f(a, b)) ≤ ε2 if (x, y) and (a, b) are in (Aκj ∩D1)×Dκj .

Choose (xκj , yκj) ∈ (Aκj ∩D1)×Dκj and set

g =
n

∑

κ=1

( mκ
∑

j=1

XCκj ×
(

XFκj f(xκ, yκ)
))

is in G. Moreover, ‖f − g‖w,p ≤ ε. Indeed, let x ∈ D1, y ∈ Y.
Case I: (x, y) ∈ Aκj ×Bκj .
Then g(x, y) = f(xκ, yκ) and so p(f(x, y) − g(x, y)) ≤ ε2, which implies

that

v(y)p(f(x, y)− g(x, y)) ≤ ‖v‖ε2 < ε.

Case II: (x, y) /∈
⋃

κ,j Aκj ×Bκj .
Then g(x, y) = 0 and (x, y) /∈ D and so

w(x, y)p(f(x, y)− g(x, y)) ≤ v(y)p(f(x, y)) < ε.

This proves the first part of the theorem.
(2) To prove the second part, we show first that CWκ(X × Y, Ê) is com-

plete. To this end, let (fα) be a Cauchy net in CWκ(X × Y, Ê).
Given (x0, y0) ∈ X × Y , there exist u ∈ U , v ∈ V with u(x0) > 0,

v(y0) > 0. Using this, we get that the net (fα(x0, y0)) is Cauchy and hence
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convergent in Ê. Define

f : X × Y 7→ Ê, f(x, y) = lim fα(x, y).

(i) For each compact subset D1 of X, f |D1×Y is continuous. Indeed, let
x0 ∈ D1 and y0 ∈ Y . There exists a compact clopen neighbourhood W of
y0 ∈ Y .

If u, v are the R-characteristic functions of D1, W , respectively, then
w = u× v ∈ W and

‖fα − fβ‖w,p = sup{p(fα(x, y)− fβ(x, y)) : x ∈ D1, y ∈ W}.

It follows that fα → f uniformly on D1 × W . Since D1 × W is open in
D1 × Y and (x0, y0) ∈ D1 ×W it follows that f is continuous at (x0, y0) on
D1 × Y .

(ii) If w = u×v ∈ W , then ‖f‖w,p < ∞ for each p ∈ cs(E). Indeed, there
exists α0 such that ‖fα0 − fα‖w,p ≤ 1, for all α � α0, which implies that

‖fα0 − f‖w,p ≤ 1 and so ‖f‖w,p ≤ max{1, ‖fα0‖w,p} < ∞.

It follows from the above that f ∈ CWκ(X × Y, Ê) and fα → f in the
topology τw. To finish the proof, it suffices to show that CWκ(X × Y, E)
is dense in CWκ(X × Y, Ê). So, let f ∈ CWκ(X × Y, Ê), w = u × v ∈ W
and p ∈ cs(E). As in the proof of the first part, there are clopen subsets
A1, . . . , An of X, clopen subsets B1, . . . , Bn of Y and (xκ, yκ) in X×Y such
that the sets Aκ×Bκ, κ = 1, . . . , n, are pairwise disjoint and ‖f−g‖w,p ≤ 1,
where

g =
n

∑

κ=1

XAκ × (XBκf(xκ, yκ)) .

Since w is bounded, we have that ‖w‖ = d < ∞. For each κ, choose sκ ∈ E
such that p(sκ − f(xκ, yκ)) < 1/d. Now

h =
n

∑

κ=1

XAκ × (XBκsκ) ∈ G.

If (x, y) ∈ Aκ ×Bκ, then g(x, y) = f(xκ, yκ), h(x, y) = sκ, and so

w(x, y)p(f(x, y)− h(x, y)) ≤
≤ max{w(x, y)p(f(x, y)− g(x, y)), w(x, y)p(f(xκ, yκ)− sκ)} ≤ 1.

Thus ‖f − h‖w,p ≤ 1 and the result clearly follows.

Let Cκ,0(X×Y, E) denote the space of all E-valued functions f on X×Y
such that f |D1×Y ∈ C0(D1 × Y,E) for each compact subset D1 of X. If we
consider on Cκ,0(X × Y, E) the locally convex topology generated by the
seminorms ‖f‖D1,p = sup{p(f(x, y) : x ∈ D1, y ∈ Y }, where p ∈ cs(E)
and D1 is a compact subset of X, then we have
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Theorem 4.8. Let X, Y be zero-dimensional Hausdorff topological
spaces, where Y is locally compact, and let E be a Hausdorff complete locally
convex space. Then

(C(X), τc) ⊗̂ (C0(Y, E), τu) ∼= Cκ,0(X × Y,E).

Proof. The proof is analogous to the one of the preceding theorem, using
an additional fact that the clopen compact subsets of Y form the base for
the open subsets of Y .
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5. A. K. Katsaras and A. Beloyiannis, Non-Archimedean weighted spaces
of continuous functions. Rendi. Mat. Appl. 16(1996), 545–562.

6. A. K. Katsaras and A. Beloyiannis, On non-Archimedean weighted
spaces of continuous functions. Proc. Fourth Inter. Conference on p-adic
Analysis (Nijmegen, The Netherlands), 237–252, Marcel Dekker, 1997.

7. A. K. Katsaras, The Strict topology in non-Archimedean vector-valued
function spaces. Proc. Konink. Nederl. Akad. Wetensch. A 87(2)(1984),
189–201.

8. W. H. Schikhoff, Locally convex spaces over non-spherically complete
fields I,II. Bull. Soc. Math. Belg., Ser B 38(1986), 187–224.

9. J. B. Prolla, Approximation of vector-valued functions. North Holland
Publ. Co., Amsterdam, New York, Oxford, 1977.

(Received 26.11.1996)

Authors’ address:
Department of Mathematics
University of Ioannina
P.O. Box 1186, 451 10 Ioannina
Greece


