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INTRODUCTION

The problem of the existence of an interior extension for a given closed normal
curve was solved by Ch. Titus [1] in 1961. In 1967 S. Blanc [2] gave another
solution of this problem. Subsequently, many authors investigated different
aspects of this theory [3]-[9], but in al these papers the existence of interior
extension was proved under the assumption that the images of critical points
of this mapping do not lie on the given curve. On the other hand, M. Morse
[10] introduced the concept of a partial branch point of the inverse function and
extended his formula connecting the angular order of a curve with the sum of
multiplicities of critical points for interior mappings possessing critical points
on the boundary.

In this paper we investigate a problem of the existence of an interior extension
with critical points on the boundary for a given closed normal curve (Section
3). In Section 4 an interior extension is constructed for a closed curve which is
not normal.

1. PRELIMINARIES

Two continuous mappings (paths) g : [a,b] — R? and & : [c, d] — R? are called
equivalent if there exists a sense preserving homeomorphism x : [a,b] — [c,d]
such that ¢ = h o y. The set of all equivalent paths is called a curve and
each path belonging to the curve is called a representation of this curve. Let
v be a curve, and let v(z) be some representation of v defined on [a,b]. The
point i(y) = ~y(a) is called the initial point of v and #(v) = ~(b) the terminal
point of v. By (v) is denoted the set of images of v(x). Let 3 and -, be two
curves such that i(y2) = t(y1), and let v (z), € [a,b] and Y2(z), = € [c,d]
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be the corresponding representations. Take some b’ > b and a homeomorphism
X : [0,0] = [e,d], x(b) = ¢ and consider the mapping defined on [a, V'

) (1) = 71 (), when z € [a, ],
) {72(X(1E)), when x € [c,d].

The curve containing the mapping (71 - y2)(x) will be denoted by ~; - 2.

Let y(z) € 7, « € [a,b] and [c,d] C [a,b]. By v[c,d] we denote the curve
generated by the restriction of y(z) to [¢,d] and by v[d, ¢| the curve generated
by v(w(x)), where w(z) is a sense reversing homeomorphism of [, d] onto itself.

The point v € (v) is called a vertex (or node) if for some path ¢ € ~,
cardiy)~!(v) > 1 [4], [6]. Tt is clear that the definition of a vertex does not
depend on the choice of representation. A vertex v is called a double point if
Y™t = {z1, 29} and (Y[z; — €, 21 + €]) separates (Y[ry — €, zo + €])\t(z2) for
some € > (. The curve is called normal if it has a finite number of vertices and
each of them is a double point [9].

Let f be an interior mapping [11], [12] of a domain D into R?. For every z € D
there exists a neighborhood U(z) such that the restriction of f to U(z)\{z} is
a (u(f, z) + 1)-sheeted covering of f(U(2))\{f(2)}. If u(f,z) > 0, we say that
the covering f|y ;) is branched and the point z is called a critical point of the
multiplicity pu(f, z). After G. Francis [6] we call an interior mapping having a
finite number of critical points in D a polymersion.

A closed curve 7 is called an interior boundary [1], [2] if there exists an
interior mapping (polymersion) of the unit disk D?, continuous in D? such that
the restriction of f to the counterclockwise oriented unit circle S! is a path
belonging to 7. Another expression of this fact is: f is an interior extension
of .

2. THE EXISTENCE OF AN INTERIOR EXTENSION FOR A NORMAL CLOSED
CURVE

In this section a summary of the main result of the paper [5] is given for
convenience.

Let w = v(¢), ¢ € S, be a representation of a closed normal curve and
let aj, j = 0, N, be the collection (raying) of paths (rays) with the following
properties:

1. i(a;) = a; lies in some bounded component of R? — (v), t(a;) = b; lies in
the unbounded component of R?\(v). There is at least one a; in each bounded
component of .

2. Each «; is transverse to .

3. «;’s are pairwise disjoint and do not meet nodes of +.

The crossing point of v and «; is called positive if v crosses «; from right
to left, and negative otherwise. Index crossing points of a; and v by (4, k, £1)
(called hereafter letters), where the sign of the third coordinate coincides with
the sign of the crossing and second coordinates k, are arranged in an increasing
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way along «;. In what follows the expression “a point (a,b,c)” will mean the
crossing point corresponding to the letter (a, b, c).

Choose i(v) and trace along v. We make a sequence « (called the word
of v) of letters as they are encountered in the tracing of 7. Denote by G(v)
(the grouping) and B(y) (the branching) collections of letters of a satisfying
following conditions

(a) The sets of A(y) = G(v) U B(v) are mutually disjoint.

(b) If A € A(~) and A’ € A(y), then y71(A) is contained in one component
of ST\y~1(A).

(c) Every set in G(7) is of the form {(j, k, —1), (j, k', 1)} with k£ < &’

(d) Every negative letter (i.e., the letter with a negative third coordinate)
occurs in some set of G(7).

(e) All letters belonging to some B € B(7) have the same first coordinate. In
other words, each B consists of letters corresponding to the crossing points of
one path of the raying.

Such a set A(y) is called an assemblage for v. The assemblage is called

maximal if Y (card B—1) = 7(vy), where 7(7) is the tangent winding number
BeB(v)

of ~.

Theorem ([5]). A normal closed curve has an interior extension iff it has a
maximal assemblage. An assemblage determines multiplicities of critical points

of corresponding interior extension f. Namely, for B € B(y) there exists v € D?
such that f(x) = a; and p(f,z) = card B — 1.

Remark. The investigation of the problem of the existence of an interior
extension was carried out in [5] under the condition that v is smooth. But it is
easy to show that the above-stated result remains true for a piece-wise smooth
curve as well.

3. THE EXISTENCE OF AN INTERIOR EXTENSION WITH PARTIAL CRITICAL
PoiNTs

By U(z) we denote a neighborhood of z in R%. For a point ¢ € S denote
U+(¢) = U(Q) D", U-(¢) = U) N CD* U*(() = UQ) N D> U(¢) =
U)n D’ Let 7(¢) be a representation of a normal curve and let v[(1, (2] be
a simple arc of this curve. Let (y € v[(1, (3] and let U(7y({p)) be a neighbor-
hood of 7({p) such that U(y(¢p))\([¢1, (2]) consists of two components. Denote
by U*(v((o)) the component of U(v(¢o))\([¢1,2]) lying to the left of v[(1, (o]
and by U~ (7({p)) the other component. By U, (v(({y)) and U_(y(¢p)) denote

U+ (1(60)) U ({[Gr, Gl) NU(4(60))) and U (4(60)) U (G, &) N U (1(Go))), respec-
tively.

Let f be an interior extension of . A pomt ¢ e Stis called a partial critical
point of f (or a partial branch point of f~!) of multiplicity pu(f,¢ ¢) > 0 if there
exists an extension F of f from U, ({) to U(C) such that F : U(C)\{(} —
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FU(FIMS(Q)} is a p(f,C) + Lsheeted covering and Fly-(C) : U(¢) —
F(U~(f(¢)) is a homeomorphism.
The behavior of f(z) in U() can be described in the following way [12]:
¢ € S'is a partial critical point of f of multiplicity (f, ) if there exist 2u(f, ¢)
— = 2
simple arcs ¢;, j = 1,2u(f, C), .(ﬂl )<€j) = {C} passing through some U*(()
J:

=\ 260
such that the restriction of f to each component of UT(()\ Mﬂl (¢;) is schlicht
J:
and maps this component onto UT(f(¢)) or U~ (f(¢)). If we number these
components in a consecutive way then the components with odd indices will be
taken onto UT(f(()), while the components with even indices onto U~ (f(C)).

Theorem 1. Let v be a normal closed curve possessmg a mazimal assem-
blage A( ) and let B = {(jakOa ) (.j7k17 )7' ( )} S B( ) k < k]-i—l;
i =0,u—1, p > 0. Then there exists an interior extenswn f of v such that
f has a partzal branch point of multiplicity p at the point (j, ko, 1).

Without loss of generality we can assume that the raying ag, a1, ..., ay is
numbered so that the set B consists of letters belonging to «y.

Let E be an open set such that it contains the ray g and does not contain
other rays of the raying and nodes of the curve . Moreover, we can choose E
in such a way that every component of E N () contains at most one crossing
point belonging to «g. Denote by (7k,) the component of £ N () containing
the point (0,k;,1) € B, i =0,u — 1.

Take a simple arc y[¢’, ("] such that (y[(", ("]) C (Yk,)- Let (0,ko,1) = ~(¢) =
y(e?), ¢ = e (" = e?". Take 2p1+ 2 points ¢ = e k =0,2u+ 1, such
that 0 < 6y < 05 < - <92u<9<92u 1< O3 < - 91<92u+1<0. Let
U(v(¢)) be a nelghborhood such that (y[¢’,¢"]) C (7(7(5)) C E.

Denote by ¢; a simple arc such that i(g;) = (), tlg1) = (&),

(g)\{7(¢0),7(¢1)} € UF(7(C)), and by go a simple arc such that i(gz) = ¥(¢1),

t(y2) = Y(G), (g)\{7(¢1),7(G)} € U~ (4({)) ete. Without loss of generality
we can assume that all curves g,, n = 1,2u, have no common points except
end points of the adjacent curves. Evidently, go,11 is transversal to all curves
gn, with odd indices. Denote g = g1 - g2 - - - g2u4+1 and parametrize this curve in
some way by 0, 0y < 6 < 05,,;. Denote

Y(e?), 0<6 <0,
Y(0) =39(0), 0o <0< by,
’)/(ew)? 92,u+1 S 6 S 27T.

Denote by Doji1, k = 0, i, the domain bounded by the closed Jordan curve
V[Cors Cont1] * Gopr1s and by Doy, k = T1,u, the domain bounded by
Gor-  ¥[Coks Cor—1]. Take in each Doy, k = 1,1, a point ay, and draw sim-
ple disjoint paths anyy through E on the left of o such that i(«;) = a; and
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t(;) lie in the unbounded component of R?\(v), j = N +1, N + u. More-
over, we can choose paths «j, j = N+ 1,N + p, in such a way that the
crossing point of «; and gy, preceeds, on g, the crossing point of o, and gof
when N+1 <75 < s < /¢{+N,1 < /¢ < pu. Number the crossing points
along each «;, 7 = N+ 1, N + u, consecutively so that the second coordi-
nate of (a;) N (go) is equal to p. It is evident that all crossings (o) N (g20),
J=N+1,N+u, 1 <€ < p, are negative. Choose two points p; and p,
such that p; € (o) NU((C)), p2 € () NU(7(C)), p1 preceeds pe on ap and
((v)\(9)) N {ao[p1,p]) = @. Denote by g an arc such that i(q) = p, t(q) = p,
(@) N ((M\(Y[C, o)) = @ and (g) N (7[C, Co]) consists of a unique point. Denote
Qo = aglag, p1] - q - o [pa, bol-

Consider the system of rays ag,aq,...,an, ng1, - ANy AS gopqr iS
transversal to all gory1, & = 0, 4 — 1, we have at least one initial point of rays
in each bounded component of R?\(v*). Thus we obtain the raying for ~*.

Now we are going to construct an assemblage for v*. Since the existence of
an assemblage does not depend on a choice of the initial point of the curve, we
can assume that i(7*) = (). Then the word for v* has a following form:

(N+M7M+T1a1)(N+M_17,u+?n171)(N+17M+r171)31 (1)
(N + py pp+ 719, (N 4 p = 1 pp 419, 1) - (N + 1, pp 479, 1),

(N‘i‘/la/i‘i"f’ml)(N‘f‘M—17M+7”n71)“'(N+17M+7’n71)5m

where n > and Sy, S1, ..., S, are the sets of letters belonging to rays ag, aq, . . .,
mn

an. Select from list (1) all letters belonging to ‘Lijlwk)ﬂ(&o). Let 7y, gy -« -5 T

be the second coordinates of these letters arranged in the order as they are
encountered in word (1). Replace the numbering of arcs v,, ..., v, in the fol-
lowing way. The arc containing the letter with the second coordinate r,, will
have a new number p + ¢ and be denoted by 7;,,. Then we replace the sec-
ond coordinates of letters belonging to 7}, by u+ ¢ and mark the letters with
changed second coordinates by the superscript .

Consider the following list of sets:

{(N +1,p1,—1), (N +1,2p, 1)*}, {(N+ 2,1, —1), (N + 2,24, 1)*}, .
{(N + sty = 1), (N + 1, 2p, 1)*},
{(N-FQ,/L— 1,—1), (N +2,2u— 1, —1)*},...
{(N+pp—1,-1), (N +p,2u— 1,1},



6 R. ABDULAEV

{(N+kp— (k= 1),=1), (N + k,2u— k +1,1)"}, (2)
{(Ntk+1Lp—(k=1),-1),(N+k+1,2u—k+1,1)},...,
{(N+u,u—(k:—1),—1),(N+u,2u—k+1,1)*},...
{(N+u—1,2,—1),(N+u—1,u+2,1)*},
(N 01,2, =1), (N 4 4+ 2,1 F (N + o, 1, =1), (N 4, 4 1,1)7

Include all sets of list (2) as well as all sets of G() into G(v*). B(y*) consists
of all sets of B(7y) except By. We claim that G(v*) U B(7*) is an assemblage for
~*. Tt is evident that conditions (a), (¢) (d), (e) are fulfilled.

Recall that B = {0, ko, 1), (0, + 1, 1)*, (0, + 2,1)*,...,(0,2u,1)*} was in-

cluded in A(7y) and hence the set [0, 0a,,41]U(7*) 1( .Llﬁl('y;ﬂ)) does not separate,
J:

on S, any (y*)7!(A) for A € A(v), A # B. Thus we have to check that for
any two sets A; and A, from the (2) (7*)7'(A;) does not separate, on S', the
set (7)1 (Az).

Consider two sets A; = {(N + kj,mi, —1), (N + ki, pp + my, 1)}, @ = 1,2.
Suppose that (v*)"'(N + ki, my, —1) preceeds (v*)"H(IN + kg, mo, —1). Then
either my > moy, or m; = my and ky; < ko. In the former case p + mo < 4 my
and hence (N + ki, pu + mq, 1)* follows (N + ko, it + ma, 1)*. In the latter case
the crossing points (N + k1, p+myq,1)* and (N + kg, 1+ mq, 1)* lie on the same
Vipm, and as ki < kg, (N + ko, + my, 1)* preceeds (N + ki, o+ my,1)* on
Y im,- In both cases (v*)7'(A;) does not separate (y*)"'(Az) on S*. Thus
A(v*) is an assemblage for v*. Moreover, A(7*) is a maximal assemblage since

> (cardB—-1)= > (cardB—1)=7(y)—p=1(7v").

BEB(y*) BeB(v)\Bo

Denote by f*((), ¢ € ﬁQ, the interior extension of v* and let ¢ be the arc of
St corresponding to g under the mapping f*.

Now we are going to construct some bordered Riemann surface using the
procedure of identification of boundary arcs of the domains Dy, k = 1,2u + 1.
Write boundaries of Dy and D, in the form

0Dy = (¢, {] - (¢ Gl
0Dy = g3* - 7[¢1,¢] - (¢, ¢

and paste Dy and D, along (v[¢1,(]). Denote by Dy the obtained domain. We
have

0D5 =3[0, ¢ ¢, Gl g5 ort
and

9D = [Co, ¢ - Y(C, G - 95
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After pasting 52 and D3 along (v[(a, ED, we obtain the domain D5 which is no
longer one-sheeted and

ODs = 4[Co,¢] - V(G sl g5 -9t g
After 241 steps of pasting, we obtain the many-sheeted domain Dy, and

852y+1 = 7(¢0, (] - V[C, Gop] 'g2_u1+1 ’92_;} gt =G0y G - g

Denote by G the image of Dy,1 under the mapping h(w) = "/w — ~(C).
G is a simply-connected domain bounded by a simple closed curve.

Let D’ be a simply connected domain such that D' € CD” and D'ND” = (0).
Consider the function h(f*(e?)), e € (), where we mean that the points
f*(e) belonging to (g) are located on the boundary of the many-sheeted do-
main Dy, 1. Then ¢ — h(f*(¢??)) is a homeomorphism of (¢) onto some arc
of the boundary of the domain GG. Let H be a homeomorphism of D’ onto G
such that

H‘w—hof. (3)

The existence of such a homeomorphism H is evident (it follows from Lemma
6.1 of [11]). Consider the function

= ) (), if zeﬁz,
f(z)_{h‘loH, if zeD'

By (3) f(2) is continuous in D>UD' U (£). As f*(z) and h~ o H are interior
mappings in D? and D', respectively, and H and h are homeomorphisms on (£)
and (g), respectively, f(2) is an interior function in D?U D’ U (). The behavior
of f in a vicinity of the point m € (A(D*U D’ U (1)), f(m) = ~v(¢) is defined by
the behavior of h at the point 'y(f ) and hence m is a partial critical point of f
of multiplicity p. O

Now we will prove the inverse statement.

Theorem 2. If a normal curve v has an interior extension possessing partial
critical points, then there exists an interior extension of v without partial critical
points.

Let f be an interior extension of . Denote by ¢;, j = 1, m, partial critical
points of f , and by pu; their multiplicities. Let Up((;) be a neighborhood of (;
such that ﬂUo(Cj)ﬂSl is a simple arc. Let £; = [}, (J] be an arc of S* such that
¢ € (¢;) C Up(¢;) and let U(¢;) be a neighborhood of ¢; such that OU~(¢;) =
;- €5, where (' is a simple arc (¢}) N D = {5, ¢/} Denote L; = fodt,
and consider a neighborhood U(v((;)) such that OU(v(¢;)) is a simple arc and

AU (v(6)) N () = {F(¢)). ()} Demote OU(v(¢;)) = Lj - Ly and let ¢ :
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(¢5) — (L) be an arbitrary homeomorphism ¢((}) = f(CJ/), ©(¢) = f(gj")
Denote by ® the homeomorphism
©:U (G) = U (1))
coinciding with ¢ on OU ™~ ((j).
The mapping

®(z), z€U (¢)

is an interior mapping of the simply connected domain D? U U~ (¢;) U (¢;) and
from the definition of a partial critical point it follows that (; is a (interior)
critical point of f; of multiplicity p;.

f = {f(z), z € Ez,

Repeat the above described procedure for every partial critical point of f .
Finally, we obtain a function f without partial critical points. The restriction
of f to the boundary of the domain of definition is a representation of a normal
curve I' which differs from ~. Applying the theorem of Section 2 to I' we
conclude that there exists an assemblage A(T"). As the partial critical points (;,
j =1, m, of f have became the interior critical points of f, each G, j=1m,
must be the initial point for a ray «;, j = 1, m, included into the raying R(I")
generating A(T).

Take m points zj, z; € UT(v(¢;)), 7 = 1,m, and connect z; with ¢; by a
simple arc A; in U*(7(¢;)). Consider a new system R’ of rays obtained from
R(T') by replacing of a; by oy = A;- ;. Tt is clear that R’ satisfies all conditions
of raying for ~.

Let B € B(I'), and let B consist of points belonging to /. If the crossing
point of a; with L’ does not belong to B we include B into B(7). If the crossing
point of a; with L;- belongs to B, we replace this point by the crossing point
of o) with ¢ and include obtained set B’ into B(7). All other sets of B(I') are
included into A(7y) unchanged as well as all sets of G(I'). It is evident that the
set B(y) UG(I') is an assemblage for 7. As card B’ = card B the multiplicity
of every z; is equal to uj, 7 = 1,m. Hence by Theorem 24.2 of [11] A(v) is a
maximal assemblage for 7.

4. THE EXISTENCE OF AN INTERIOR EXSTENSION OF A NONNORMAL CURVE

o~

Let v(¢) = ~(¢") be a parametrization of a closed curve 7. The point ¢ = %
is called a reversing point if there exist & > 0, &’ > 0 and a sense reversing

homeomorphism ¢z : [ei0=="), eia] — [eig, €¢(§+5”)] such that
Y(Wel(e”)) = (), 0el—<0.

Let f be the interior extension of v and let E be a reversing point of y. We

~

say that ¢ is a reversing critical point of f(z) (or f({) is a reversing branch

-~

point of f~1) of multiplicity pu(f,¢) > 0 if there exist some U(C), U(f(C)) and

PN o~

p(f, ) simple arcs ¢; passing through U*(¢) and such that (¢;) have a unique
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common point at Z, f(z) is schlicht in every component v;, j = 1, u(f, 6) + 1,
of U()\ U () and f(z) takes every V; onto U(f(C))\(y[e®=<), €@ +<")]),

Let Q = (¢1,92, - - -, qm) be an ordered m-tuple of points of (v) distinct from
the chosen initial point of . It is allowed that there are coinciding points among
g; but we require that every pair of points with succesive indices consists of
distinct points. Denote by ~; the arc of  such that i(y;) = i(v) and t(y1) = ¢,
by 7 the arc of y or 771, i(72) = q1, t(12) = @2 ete, i(Yms1) = Gy t(Vms1) =
t(y). Consider the curve vg =1 - Y2+ Yimt1-

The curve coincides with v iff every g;_; preceeds ¢; on 7, j = 2,m. Denote
by @' the subset of ) consisting of points ¢, not separating ¢, and g1
on v, k = 2, m—1. Denote n = card@'. It is clear that n is even. Let
= (p1,p2,. .., pm) be a vector where p;, j = 1,m, are positive integers.

Denote |fi| = in: pj and v =n/2.
j=1

Theorem 3. Let v be a normal curve and let f be an interior extension of
~ with a partial critical point ¢ of multiplicity fi. Then for any Q C U (f (E))
and [i such that |fi| + v = i there exists an interior extension f of v such that
every ¢; € Q\Q' is a partial branch point and q; € Q' is a reversing branch
point of f~' of multiplicity yi;, j = T,m.

Denote ny = card(Q' N {q1,42,--.,q}) and by (A“j, j = 1, m, the points cor-
responding to ¢;, 7 = 1,m, under the mapping f. Let the set F, points (j,
k =0,2u+ 1, and curves gy, k = 1,2+ 1, be chosen as in Section 3. We as-

sume that U(f(¢)) is chosen so that (gx) NU(f(¢)) = &, k = 1,2 + 1. Denote
flsr =7(¢). Then

aDj = W[Cj—lagl] ) 7[5? Cj]gj_lv J=12m+1+n.

Paste D; and D, along (v[(1, (1]) and denote the obtained domain by Ds. We
have

0Dy = (G0, ] - 7[C1. Gl g5 - g
After pasting D, and D3 along (7[Cs, (1)), we obtain D3 and
ODs = (G0, (1] - V[C1, Gl - g5 92t - o

After 2uy + ny steps of pasting we obtain the many-sheeted domain _/D\2#1+1+n1
with the boundary

8D2M1+1+n1 = 7[(07 Cl] ' 7[(17 C2M1+1+n1] : 92_#11-‘,-1-‘,-7“ T 91_1

The next domain Day, 4,12 is pasted with Doy, 11 alon&(v[gzﬂﬁmﬂ,@]).
The procedure is continued by pasting ﬁ2m+n1+k with Dy, yn,+k—1 along
(V[Coprtni+k, G2]) for k& < 21 + ng + 1. The domain Dy, 125 4np42 18 pasted

With Doy 42npt1 800G (Y[Copt2pmimatt, C3]).  The general rule of pasting



10 R. ABDULAEV

is the following: the domain D ., is pasted with D ..
2 pjtns—1+k 2 pjtns—1+k—1
=1 j=1

along (7[¢C ... ,G]) for 2 <k < 2ug +n,+ 1. The domain D is

2> pi+k 2> pitns 142
j=1 j=1

pasted with D - along (y[( = ,Esﬂ]), 1<s<m-—1,ny=0
2> pjtng_1+1 2> pytns+l
Jj=1 j=1

and the domain B m =D (

m — D.~ is pasted with D,~, . alon
2 nm 2( X2 Mj—l—V) 2 P 2t s
j=1

j=1

<7[Ema CQﬁ_t'_l])- We have
N N 1 (SR S PP DSt

2> pjtns_1+k 2> pjtns_1+k 23 pjtns_1+k
Jj=1 Jj=1 j=1

and
ODsggii1 = V[0, G- Y[C &) VG Goi] - Gty - 9ot - 91 (4)

We claim that D\Q; 41 is a simply connected domain. Indeed, all domains involved
in the pasting procedure are simply connected and each domain is pasted with
only one other domain along only one boundary arc.

Let h : D2 +1 — G be a homeomorphism onto a one-sheeted simply connected
domain. Let the domain D’ be the same as in the proof of Theorem 1, and let
H be a homeomorphism of D’ onto G such that

H

~

o =), e e (o),
From (4) it follows that the function

]?_ f(Z), Z€E2a
h"loH, z€D'

is an interior extension of 7q.
To complete the proof, we have to show that the point g; is a branch point
(partial or reversing) of multiplicity u;, j = 1,m. It is clear that without loss

of generality we can assume that f is defined in 52, and the preimages of g,
under f are the same points (;, j = 1, m.

Take some Cs and calculate the number of domains Dy, such that g5 belongs to

D,.. From the construction of Dy, it follows that g belongs to D
2 Z Hj+ns— 1+k
Jj=1

1 <k < 2ps+ng+ 1. Hence g, belongs to 2u, + 1 domains Dy if ny = ns 4
and to 2u, + 2 domains Dy if ng = ngyq1 + 1. Thus (, is a partial critical point
of multiplicity u, if ns = ns_1 (gs separates gs_1 and ¢s41) and (s is a reversing
critical point of multiplicity s if ny = ns_1 + 1 (¢s does not separate g;_; and
QS+1)~
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