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SEQUENTIAL COMPACTNESS FOR THE WEAK TOPOLOGY
OF VECTOR MEASURES IN CERTAIN NUCLEAR SPACES

JUN KAWABE

Abstract. We give a sequential compactness criterion for the weak topology
of vector measures with values in certain nuclear spaces, such as the space
S of all rapidly decreasing, infinitely differentiable functions, the space D of
all test functions, and the strong duals of those spaces. This result contains
Prokhorov–LeCam’s criterion for real measures and applies to cases which
are not covered by März–Shortt’s criterion for Banach space valued vector
measures.
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1. Introduction

In 1956, Yu. V. Prokhorov [15] gave a compactness criterion for subsets of
finite non-negative measures on a complete separable metric space, which still
plays an important role in the study of stochastic convergence in probabil-
ity theory. This criterion was extended by LeCam [12] to real measures on
a completely regular space whose compact subsets are all metrizable (see also
Varadarajan [19], Smolyanov and Fomin [17], and Vakhania et al. [18]).

Recently, Dekiert [3] has introduced the notion of weak convergence of vec-
tor measures, and März and Shortt [14] have given a sequential compactness
criterion for Banach space valued vector measures on a metric space.

The purpose of this paper is to give compactness and sequential compactness
criteria for vector measures with values in certain nuclear spaces with respect
to the weak convergence of vector measures. In Section 2 we prepare some
necessary definitions and results concerning vector measures and an integral of
scalar functions with respect to vector measures.

In Section 3, we show that a set of Radon vector measures on an arbitrary
completely regular space with values in a semi-Montel space is compact for the
weak topology of vector measures if the corresponding set of real measures is
compact for the usual weak topology of measures.

In Section 4, using this criterion, we obtain a sequential compactness criterion
for Radon vector measures with values in certain nuclear spaces, such as the
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space S of all rapidly decreasing, infinitely differentiable functions, the space D
of all test functions, and the strong duals of those spaces. These results contain
Prokhorov–LeCam’s compactness and sequential compactness criteria for real
measures and apply to cases which are not covered by März-Shortt’s criterion
for Banach space valued vector measures.

In this paper, all the topological spaces and topological linear spaces are
Hausdorff, and the scalar fields of topological linear spaces are taken to be the
field R of real numbers. We also denote by N the set of all natural numbers.

2. Preliminaries and Results

Let S be a completely regular space. Denote by B(S) the σ-field of Borel
subsets of S and by C(S) the Banach space of all bounded, continuous real
functions on S with the norm ‖f‖ ≡ sups∈S |f(s)|. Let X be a locally convex
space and X∗ the topological dual of X. Denote by 〈x, x∗〉 the natural duality
between X and X∗.

A finitely additive set function µ : B(S) → X is called a vector measure if it
is σ-additive for the given topology of X, i.e., for any sequence {En} of pairwise
disjoint subsets of B(S), we have

∑∞
n=1 µ(En) = µ(

⋃∞
n=1 En), where the series

is unconditionally convergent. We say that a vector measure µ : B(S) → X is
Radon if for each ε > 0, E ∈ B(S), and a continuous seminorm p on X, there
exists a compact subset K of E such that ‖µ‖p(E−K) < ε, where ‖µ‖p denotes
the p-semivariation of µ (see Diestel and Uhl [4], Lewis [13], and Kluvánek and
Knowles [11] for the definitions and basic properties). Denote by Mt(S; X) the
set of all Radon vector measures µ : B(S) → X. We also denote by Mt(S) the
set of all real Radon measures on S. Then Mt(S) is a Banach space with the
total variation norm |m| ≡ |m|(S), and is isometrically embedded into C(S)∗

by the natural embedding θ defined by

m ∈Mt(S) 7→ θ(m)(f) =
∫

S

fdm, f ∈ C(S). (2.1)

A subset V of Mt(S; X) is said to be uniformly bounded if supµ∈V ‖µ‖p(S) <
∞ for every continuous seminorm p on X. If µ is a vector measure and x∗ ∈ X∗,
then x∗µ defined by (x∗µ)(E) = 〈µ(E), x∗〉, E ∈ B(S), is a real measure. For
any V ⊂ Mt(S; X), put x∗(V) = {x∗µ : µ ∈ V} ⊂ Mt(S). Then the following
is well-known (see, for instance, [8] and [9]):

Lemma 1. Let S be a completely regular space and X a locally convex space.
(1) µ ∈Mt(S; X) if and only if x∗µ ∈Mt(S) for each x∗ ∈ X∗.
(2) V ⊂ Mt(S; X) is uniformly bounded if and only if x∗(V) is uniformly

bounded for each x∗ ∈ X∗, i.e., supµ∈V |x∗µ|(S) < ∞, and this is the case that

sup
µ∈V

∣∣∣∣∣
∫

S

fdx∗µ

∣∣∣∣∣ < ∞

for each f ∈ C(S).
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In this paper, we need an integral of measurable real functions with respect to
vector measures. Let µ : B(S) → X be a vector measure. A Borel measurable
real function f on S is said to be µ-integrable if (a) f is x∗µ-integrable for each
x∗ ∈ X∗, and (b) for each E ∈ B(S), there exists an element of X, denoted by∫

E

fdµ, such that

〈∫

E

fdµ, x∗
〉

=
∫

E

fdx∗µ

for each x∗ ∈ X∗. This type of integral is defined by Lewis [13], and we refer
the reader to [13] and [11] for the properties of the integral. We note here that:
(1) the integral is linear in f ; (2) if f is µ-integrable, then λ(E) =

∫
E fdµ is a

vector measure on B(S); (3) if X is sequentially complete, then every bounded,
Borel measurable real function on S is µ-integrable.

3. A Compactness Criterion

We introduce the notion of weak convergence of vector measures. Assume
that X is sequentially complete. Let {µα} be a net in Mt(S; X) and µ ∈
Mt(S; X). We say that {µα} converges weakly to µ, and write µα

w−→ µ if for
each f ∈ C(S) we have

∫

S

fdµα →
∫

S

fdµ for the given topology of X. (3.1)

In the following, we equip Mt(S; X) with the topology determined by this weak
convergence and call it the weak topology of vector measures. It is easy to prove
that the neighborhood base of µ0 ∈Mt(S; X) for this topology is given by the
family of sets of the form

W (µ0; f1, . . . , fn, U) =
n⋂

i=1

{
µ ∈Mt(S; X) :

∫

S

fidµ−
∫

S

fidµ0 ∈ U

}
, (3.2)

where n ∈ N, f1, . . . , fn ∈ C(S), and U is a neighborhood of the origin in X.
This topology is a natural analogy of that defined by Dekiert [3] for vector
measures with values in Banach spaces, and coincides with the usual weak
topology of real measures in the case that X = R (cf. [15], [12], [19], [17] and
[18]).

Recall that a locally convex space in which every bounded subset is relatively
compact, is called a semi-Montel space. Every semi-Montel space is sequentially
complete (see, e.g., Proposition 11.5.2 of Jarchow [7]). The following theorem
gives a compactness criterion for the weak topology of vector measures with
values in a semi-Montel space.

Theorem 1. Let S be a completely regular space and X a semi-Montel space.
Let V ⊂ Mt(S; X) and assume that for each x∗ ∈ X∗, x∗(V) is relatively
compact in Mt(S). Then V is relatively compact in Mt(S; X).
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To prove Theorem 1, we need a type of Riesz representation theorem for
weakly compact operators. Let µ ∈ Mt(S; X). If X is sequentially complete,
then we can define a continuous linear operator Tµ : C(S) → X by

Tµ(f) =
∫

S

fdµ, f ∈ C(S), (3.3)

which is called the operator determined by µ. Recall that a linear operator
T : C(S) → X is said to be weakly compact if it maps every bounded subset of
C(S) into a relatively weakly compact subset of X. When S is compact and
X is a Banach space, it was for the first time shown in [1] that every weakly
compact operator from C(S) into X is represented by a Radon vector measure
whose values are in X (see also Theorem VI.5 of [4]).

This type of the representation theorem was extended to several other cases.
For the case that S is compact and X is an arbitrary locally convex space see
Theorem 3.1 of [13] (see also Proposition 1 of [10]).

On the other hand, for the case that X = R but S is an arbitrary completely
regular space see Chapter IV, §5, no. 2, Proposition 5 of [2] and Theorem 3.2
of [17]. For the case that X is the weak∗ dual of a barrelled locally convex space
see [9].

The following proposition, which may be virtually known, insists that every
continuous linear operator, satisfying some tightness condition, from C(S) into
X can be determined by a vector measure µ ∈Mt(S; X) even for the case that
S is an arbitrary completely regular space and X is an arbitrary locally convex
space.

Proposition 1. Let S be a completely regular space and X a locally convex
space. Assume that a weakly compact operator T : C(S) → X satisfies the
following condition (∗): For each ε > 0 and x∗ ∈ X∗ there exists a compact
subset K of S such that | 〈T (f), x∗〉 | ≤ ε‖f‖ for all f ∈ C(S) with f(K) = 0.
Then there exists a unique vector measure µ ∈Mt(S; X) such that:

(1) every bounded, Borel measurable real function is µ-integrable, and

(2) T (f) =
∫

S

fdµ for all f ∈ C(S).

Proof. We prove Proposition 1 using Theorem 2 of [17] and an ideShor a in the
proof of Theorem 3.1 of [13].

Let T : C(S) → X be a weakly compact. By IV.2.1 and Lemma 1 of IV.9
of [16], the second adjoint T ∗∗ maps C(S)∗∗ into X, and is an extension of T .

For each bounded, Borel measurable real function g on S we put

ĝ(θ(m)) =
∫

S

gdm, m ∈Mt(S). (3.4)

Since the natural embedding θ : Mt(S) → C(S)∗ defined by (2.1) is an isometric
isomorphism, it is easy to see that ĝ is a bounded linear functional on the linear
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subspace θ(Mt(S)) of C(S)∗. Therefore, by the Hahn–Banach theorem, there
exists an extension g̃ ∈ C(S)∗∗ of ĝ such that ‖g̃‖ = ‖ĝ‖.

Fix x∗ ∈ X∗ for a moment. By (∗), for each ε > 0, there exists a compact
subset K of S such that

| 〈f, T ∗(x∗)〉 | = | 〈T (f), x∗〉 | ≤ ε‖f‖
for all f ∈ C(S) with f(K) = 0. Since T ∗(x∗) ∈ C(S)∗, by Theorem 2 of [17]
we can find mx∗ ∈Mt(S) such that

〈T (f), x∗〉 = 〈f, T ∗(x∗)〉 =
∫

S

fdmx∗

for all f ∈ C(S). Consequently, we have

T ∗(x∗) = θ(mx∗) (3.5)

for all x∗ ∈ X∗.
Define the set function µ : B(S) → X by

µ(E) = T ∗∗(χ̃E) (3.6)

for all E ∈ B(S), where χE denotes the indicator function of E. It is well-

defined, i.e., if ˜̃χE is another extension of χE, then we have T ∗∗(χ̃E) = T ∗∗(˜̃χE).
By (3.5), we have T ∗X∗ ⊂ θ(Mt(S)). Hence, for each x∗ ∈ X∗, we have

〈T ∗∗(χ̃E), x∗〉 = 〈T ∗(x∗), χ̃E〉 = mx∗(E) =
〈
T ∗(x∗), ˜̃χE

〉
=

〈
T ∗∗(˜̃χE), x∗

〉
,

which implies that T ∗∗(χ̃E) = T ∗∗(˜̃χE).
In the following, we shall show that µ ∈ Mt(S; X) and satisfies conditions

(1) and (2) of Proposition 1. By (3.4)–(3.6), for each x∗ ∈ X∗ and E ∈ B(S)
we have

mx∗(E) = χ̃E(θ(mx∗))=〈T ∗(x∗), χ̃E〉=〈T ∗∗(χ̃E), x∗〉=〈µ(E), x∗〉 = (x∗µ)(E),

and this implies

x∗µ = mx∗ (3.7)

for all x∗ ∈ X∗. Since mx∗ ∈Mt(S), we have µ ∈Mt(S; X) by (1) of Lemma 1.
We prove (1): Let g be a bounded, Borel measurable real function on S.

Then, for each x∗ ∈ X∗, g is clearly x∗µ-integrable. For each E ∈ B(S), put
xE = T ∗∗((χEg)∼). Then xE ∈ X and

〈xE, x∗〉 = 〈T ∗∗((χEg)∼), x∗〉 = 〈T ∗(x∗), (χEg)∼〉 =
∫

S

χEgdx∗µ =
∫

E

gdx∗µ

holds for all x∗ ∈ X∗. Thus g is µ-integrable.
Next we prove (2): Since every f ∈ C(S) is µ-integrable as is proved above,

by (3.5) and (3.7) we have

〈T (f), x∗〉 = 〈f, T ∗(x∗)〉 = 〈f, θ(x∗µ)〉 =
∫

S

fdx∗µ =

〈∫

S

fdµ, x∗
〉
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for all x∗ ∈ X∗ and f ∈ C(S), and this implies condition (2).
Finally, the proof of the uniqueness of µ follows from Corollary 2 in I.3.6 of

Vakhania et al. [18].

Proof of Theorem 1. Since X is a semi-Montel space, it is sequentially complete.
Thus every bounded, Borel measurable real function on S is integrable with
respect to any vector measure with values in X.

For each µ ∈ Mt(S; X), we define a continuous linear operator Tµ : C(S) →
X by (3.3). Denote by L(C(S), X) the space of all continuous linear operators
from C(S) into X with the topology of simple convergence. We also denote by
XC(S) the set of all mappings from C(S) into X. Put H = {Tµ : µ ∈ V} and
denote by H1 the closure of H in XC(S) for the topology of simple convergence.

By assumption, supµ∈V |
∫
S fdx∗µ| < ∞ for all x∗ ∈ X∗ and f ∈ C(S).

Therefore, it is easy to see that for each f ∈ C(S), the set H(f) ≡ {Tµ(f) :
µ ∈ V} is a bounded subset of X so that it is relatively compact since X
is a semi-Montel space. From this and the Tychonoff theorem it follows that
H1 is compact in XC(S). To prove that H is a relatively compact subset of
L(C(S), X), we have only to show that H1 ⊂ L(C(S), X).

Since the set H(f) is a bounded subset of X for each f ∈ C(S) as is
stated above, it follows from the Banach–Steinhaus theorem (see, e.g., The-
orem III.4.2 of [16]) that H is an equicontinuous subset of L(C(S), X). Then
H1 ⊂ L(C(S), X) by III.4.3 of [16]. Thus we have finished the proof of the
relative compactness of H so that for any net {µα} of V we can find a subnet
{µα′} of {µα} and an operator T ∈ L(C(S), X) such that

Tµα′ (f) =
∫

S

fdµα′ → T (f) (3.8)

for all f ∈ C(S).
Since X is a semi-Montel space, T is weakly compact. Then we shall show

that T satisfies the tightness condition (∗) of Proposition 1. Fix ε > 0 and
x∗ ∈ X∗. By (3.8), we have

〈T (f), x∗〉 = lim
α′

〈∫

S

fdµα′ , x
∗
〉

= lim
α′

∫

S

fdx∗µα′ (3.9)

for all f ∈ C(S). On the other hand, since x∗(V) is relatively compact in Mt(S)
by assumption, there exists a subnet {mα′′} of {x∗µα′} and a m ∈Mt(S) such
that

mα′′
w−→ m. (3.10)

Since m is Radon, there exists a compact subset K of S such that

|m|(S −K) < ε. (3.11)
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Fix f ∈ C(S) with f(K) = 0. Then it follows from (3.9)–(3.11) that

| 〈T (f), x∗〉 | = lim
α′′

∣∣∣∣∣
∫

S

fdmα′′

∣∣∣∣∣ =

∣∣∣∣∣
∫

S

fdm

∣∣∣∣∣

=

∣∣∣∣∣
∫

S−K

fdm

∣∣∣∣∣ ≤ ‖f‖ · |m|(S −K) < ε‖f‖,

which implies that T satisfies the condition (∗) of Proposition 1. Consequently,
by Proposition 1 we can find µ ∈Mt(S; X) such that

T (f) =
∫

S

fdµ (3.12)

for all f ∈ C(S). Hence by (3.8) and (3.12) we have that µα′
w−→ µ, and this

implies that V is relatively compact in Mt(S; X).

We say that M ⊂ Mt(S) is uniformly tight if for each ε > 0 there exists a
compact subset K of S such that |m|(S − K) < ε for all m ∈ M . Then it
is well-known that every uniformly bounded and uniformly tight subset M of
Mt(S) is relatively compact in Mt(S) (see [17], and also [12] and [19]). The
following contains Prokhorov–LeCam’s compactness criterion for real measures.

Corollary 1. Let S be a completely regular space and X a semi-Montel
space. Let V ⊂ Mt(S; X) and assume that for each x∗ ∈ X∗, x∗(V) is uni-
formly bounded and uniformly tight. Then V is relatively compact in Mt(S; X).

Remark 1. It is readily seen that a locally convex space X, for which Theo-
rem 1 or Corollary 1 is true, must be a semi-Montel space.

4. A Sequential Compactness Criterion

In this section, we shall give a sequential compactness criterion for vector
measures with values in certain nuclear spaces. The following theorem contains
Prokhorov–LeCam’s sequential compactness criterion for real measures (see [15],
[12] and [17]) and applies to cases which are not covered by März–Shortt’s
criterion [14] for Banach space-valued vector measures.

Theorem 2. Let S be a completely regular space whose compact subsets are
all metrizable. Let X be a semi-Montel space whose topological dual X∗ has
a countable set which separates points of X (this condition is satisfied, for in-
stance, X∗ is separable for the weak topology σ(X∗, X)). Let V ⊂ Mt(S; X)
and assume that for each x∗ ∈ X∗, x∗(V) is uniformly bounded and uniformly
tight. Then V is relatively compact and metrizable for the weak topology of
vector measures, and hence is relatively sequentially compact in Mt(S; X).

To prove the theorem above, we need the following lemmas.
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Lemma 2. Let S be a space as in Theorem 2 above and X a locally convex
space. Let V ⊂ Mt(S; X) satisfy the conditions in Theorem 2. Then, for each
x∗ ∈ X∗, there exists a countable subset I of C(S) which satisfies the following
condition: For any ε > 0 and f ∈ C(S), we can find g ∈ I satisfying

∣∣∣∣∣
∫

S

(f − g)dx∗µ

∣∣∣∣∣ ≤ ε (|x∗µ|(S) + 2‖f‖+ ε) (4.1)

for all µ ∈ V.

Proof. Fix x∗ ∈ X∗. By assumption, there exists a sequence {Kn} of compact
subsets of S such that

|x∗µ|(S −Kn) <
1

n
(4.2)

for all µ ∈ V . Since each Kn is metrizable, C(Kn) is separable. Fix n ≥ 1 for
a moment, and let {gi,n}∞i=1 be a countable dense subset of C(Kn). Then each
gi,n has an extension g̃i,n ∈ C(S) such that

‖g̃i,n‖ = ‖gi,n‖Kn ≡ sup
s∈Kn

|gi,n(s)|. (4.3)

Put I = {g̃i,n}∞i,n=1. Fix f ∈ C(S) and ε > 0, and choose n0 such that
1/n0 < ε. We set fn0 = f¹Kn0

(the restriction of f onto Kn0) ∈ C(Kn0); then

there exists a gi0,n0 ∈ C(Kn0) such that

‖fn0 − gi0,n0‖Kn0
<

1

n0

, (4.4)

since {gi,n0}∞i=1 is dense in C(Kn0). On the other hand, by (4.3) and (4.4), we
have

‖f − g̃i0,n0‖ ≤ ‖f‖+ ‖g̃i0,n0‖ = ‖f‖+ ‖gi0,n0‖Kn0

≤ ‖f‖+
(

1

n0

+ ‖fn0‖Kn0

)

≤ 2‖f‖+
1

n0

.

By (4.2), (4.3) and the inequality above, for each µ ∈ V , we have
∣∣∣∣∣
∫

S

(f − g̃i0,n0)dx∗µ

∣∣∣∣∣ ≤
∣∣∣∣∣

∫

Kn0

(fn0 − gi0,n0)dx∗µ

∣∣∣∣∣ +

∣∣∣∣∣
∫

S−Kn0

(f − g̃i0,n0)dx∗µ

∣∣∣∣∣

≤ |x∗µ|(Kn0) · ‖fn0 − gi0,n0‖Kn0

+|x∗µ|(S −Kn0) · ‖f − g̃i0,n0‖

≤ 1

n0

|x∗µ|(S) +
1

n0

‖f − g̃i0,n0‖
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≤ 1

n0

|x∗µ|(S) +
1

n0

(
2‖f‖+

1

n0

)

≤ ε (|x∗µ|(S) + 2‖f‖+ ε) .

Hence, the proof of Lemma 2 is complete if we put g = g̃i0,n0 ∈ I.

Proof of Theorem 2. Denote by τ the weak topology of vector measures on
Mt(S; X). Let V1 be the τ -closure of V . Then, by Corollary 1, V1 is compact
in Mt(S; X). Hence, we have only to show that the relative topology of τ onto
V1, denoted by τ1, is metrizable. To do this, we show that there exists a metric
topology on V1 which is coarser than τ1 (see, e.g., I.5.8 of [5]).

We first note that for each x∗ ∈ X∗, x∗(V1) is the closure of x∗(V) in Mt(S).
Hence by Proposition 11 of [2], Chapter IX, §5, no. 5, V1 itself satisfies the
conditions in Theorem 2. We also note that for any µ ∈ Mt(S; X), every
bounded Borel-measurable real function is µ-integrable since X is a semi-Montel
space and hence sequentially complete. Then we have

Lemma 3. For each x∗ ∈ X∗, there exists a semi-metric dx∗ on V1 which
satisfies the following two conditions:

(1) The relative topology τ1 on V1 is finer than the topology generated by dx∗.
(2) Let µ1, µ2 ∈ V1. Then dx∗(µ1, µ2) = 0 implies that x∗µ1 = x∗µ2.

Proof. Fix x∗ ∈ X∗. Let I = {gm}∞m=1 be a countable subset of C(S) in
Lemma 2. Let {x∗l }∞l=1 be a countable subset of X∗ which separates the points
of X.

Define a semi-metric dx∗ on V1 by

dx∗(µ1, µ2) =
∞∑

l=1

∞∑

m=1

1

2l
· 1

2m
· |〈∫S gmdµ1 −

∫
S gmdµ2, x

∗
l 〉|

1 + |〈∫S gmdµ1 −
∫
S gmdµ2, x∗l 〉|

for all µ1, µ2 ∈ V1. Then we shall show that dx∗ satisfies (1) and (2). It is
easy to prove (1), and thus we shall prove (2). We assume that dx∗(µ1, µ2) =
0, µ1, µ2 ∈ V1. Then we have

〈∫

S

gmdµ1 −
∫

S

gmdµ2, x
∗
l

〉
= 0

for all l ≥ 1 and m ≥ 1. Since {x∗l }∞l=1 separates the points of X, we have
∫

S

gmdµ1 =
∫

S

gmdµ2 (4.5)

for all m ≥ 1.
Fix f ∈ C(S) and ε > 0. By Lemma 2, there exists a gm0 ∈ I such that

∣∣∣∣∣
∫

S

(f − gm0)dx∗µ

∣∣∣∣∣ ≤ ε (|x∗µ|(S) + 2‖f‖+ ε) (4.6)
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for all µ ∈ V1. Thus, by (4.5) and (4.6), we have
∣∣∣∣∣
∫

S

fdx∗µ1 −
∫

S

fdx∗µ2

∣∣∣∣∣ ≤
∣∣∣∣∣
∫

S

(f − gm0)dx∗µ1

∣∣∣∣∣ +

∣∣∣∣∣
∫

S

gm0dx∗µ1 −
∫

S

gm0dx∗µ2

∣∣∣∣∣

+

∣∣∣∣∣
∫

S

(gm0 − f)dx∗µ2

∣∣∣∣∣

≤ ε (|x∗µ1|(S) + 2‖f‖+ ε) + ε (|x∗µ2|(S) + 2‖f‖+ ε) .

Since ε is arbitrary, we have
∫

S

fdx∗µ1 =
∫

S

fdx∗µ2

for all f ∈ C(S). Since x∗µ1 and x∗µ2 are Radon, it follows from Corollary 2 in
I.3.6 of [18] that x∗µ1 = x∗µ2.

We now continue the proof of Theorem 2. Let {x∗n}∞n=1 be a countable subset
of X∗ which separates the points of X. Put dn = dx∗n for simplicity and define
a semi-metric d on V1 by

d(µ1, µ2) =
∞∑

n=1

1

2n
· dn(µ1, µ2)

1 + dn(µ1, µ2)

for all µ1, µ2 ∈ V1. Then it is easy to verify that τ1 is finer than the topology
generated by the semi-metric d. To prove that d is actually a metric, we assume
that d(µ1, µ2) = 0, µ1, µ2 ∈ V1. Then, dn(µ1, µ2) = 0 for all n ≥ 1, and hence,
by (2) of Lemma 3, we have x∗nµ1 = x∗nµ2 for all n ≥ 1. Since {x∗n} separates
the points of X, we conclude that µ1 = µ2 and the proof of Theorem 2 is
complete.

The following result gives a sequential compactness criterion for vector mea-
sures with values in S, D, and the strong duals S∗β and D∗

β.

Corollary 2. Let S be a completely regular space whose compact subsets are
all metrizable. Let Φ be a Fréchet–Montel space or the strict inductive limit
of an increasing sequence of Fréchet–Montel spaces or the strong duals of those
spaces. Let V ⊂Mt(S; Φ) and assume that for each x∗ ∈ Φ∗, x∗(V) is uniformly
bounded and uniformly tight. Then V is relatively compact and metrizable for the
weak topology of vector measures, and hence is relatively sequentially compact
in Mt(S; Φ).

Proof. It is well-known that Φ is a Montel space. By Corollary 18 in V.1.C
of [6], Φ and Φ∗β are Suslin spaces so that they are separable by Theorem 2 in
III.1 of [6]. Thus Φ∗β has a countable subset which separates the points of Φ,
and the proof is completed by Theorem 2.
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Remark 2. We say that V ⊂Mt(S; X) is uniformly tight if for each ε > 0 and
continuous seminorm p on X, there exists a compact subset K of S such that
supµ∈V ‖µ‖p(S −K) < ε. In general, this type of uniform tightness is stronger
than scalarly uniform tightness (see an example below). It may be conjectured
that uniform tightness and scalarly uniform tightness are equivalent for Radon
vector measures with values in a semi-Montel space.

Example. In this example, we give a set of Radon vector measures which
is scalarly uniformly bounded and scalarly uniformly tight, but which is not
uniformly tight in the sense of Remark 2.

Let H be a separable Hilbert space with the inner product (·, ·), and {en} a
complete orthonormal basis in H. Let {mn} be a sequence of Gaussian measures
on R with zero mean and variance n.

For each n ≥ 1, define a vector measure µn : B(R) → H by

µn(E) = mn(E)en, E ∈ B(R).

Then it is easy to see that µn ∈Mt(R; H).
For each x ∈ H and µ ∈Mt(R; H), define a real measure xµ on R by

xµ(E) = (x, µ(E)), E ∈ B(R).

Then we have |xµn| = |(x, en)|mn and ‖µn‖ = mn for all n ≥ 1, where ‖µ‖
denotes the semivariation of µ with respect to the norm of H.

Put V = {µn} and fix x ∈ H. Then we have

|xµn|(R) = |(x, en)|mn(R) ≤ ‖x‖
for all n ≥ 1 so that x(V) is uniformly bounded.

Let ε > 0. Since (x, en) converges to 0, we can find n0 ∈ N such that n ≥ n0

implies |(x, en)| < ε. Hence we have

sup
n≥n0

|xµn|(R) = sup
n≥n0

|(x, en)| ≤ ε. (4.7)

On the other hand, since each xµn is Radon, the finite set {xµn; 1 ≤ n < n0}
is uniformly tight, so that we can find a compact subset K of R such that

sup
1≤n<n0

|xµn|(R−K) < ε. (4.8)

Consequently, by (4.7) and (4.8) we have

sup
n≥1

|xµn|(R−K) ≤ max

(
sup

1≤n<n0

|xµn|(R−K), sup
n≥n0

|xµn|(R)

)
= ε,

and this implies that x(V) is uniformly tight.
However, V is not uniformly tight, which will be proved below. Put

ε0 = 2

∞∫

1

1√
2π

e−t2/2dt > 0.
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Since any compact subset K of R is contained in some bounded interval
[−N0, N0] (N0 ∈ N), we have

‖µN2
0
‖(R−K) ≥ mN2

0
(R− [−N0, N0])

= 2

∞∫

N0

1√
2πN2

0

e−t2/(2N2
0 )dt

= 2

∞∫

1

1√
2π

e−t2/2dt = ε0

so that V is not uniformly tight.
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