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1. Introduction

The notions of mathematical expectation and mean square deviation of a
real-valued random variable (r.v.) ξ defined on the probability space (Ω, B,P),
are well known:

Eξ =
∫

Ω

ξ(ω)dP , σξ = (E|ξ − Eξ|2)1/2 .

Let X be a random element (r.e.) with values in a Banach lattice of func-
tions on a set T (we consider the sequence lattice as a space of functions of a
natural argument). It is naturally to introduce the “pointwise” mathematical
expectation and the mean square deviation of X as the functions EX(t) and
(E|X(t)−EX(t)|2)1/2 . Besides, there are notions of mathematical expectation
of a r.e. X in an abstract Banach space B in the Pettis [12] and the Bochner
[4] sense.

The pointwise mean square deviation (and, more general, the pointwise p-th
moment) in Banach lattices of functions was considered in [9], where conditions
of relative stability, the law of large numbers (LLN) for p-th degrees and the
central limit theorem (CLT) are proved. The “weak” mean square deviation and
its generalizations (the Pettis integral is used) in an arbitrary Banach lattice B
was considered in [7]. In particular, in [7] the LLN for p-th degrees was proved.

To investigate some problems of probability theory it is necessary to introduce
the notion of Bochner mean square deviation of a Banach-valued r.e. In Section
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2 we introduce and investigate this notion for some classes of Banach lattices.
The proposed notion of the mean square deviation, which is similar to the
Bochner mathematical expectation, is suitable for the so-called 2-convex Banach
lattices (see Definition 2), in particular for Lp , 2 ≤ p < ∞ , and is not suitable
for Lp , 1 ≤ p < 2. It is analogous to the fact that the Bochner mathematical
expectation is suitable for Banach spaces and is not suitable for many linear
metric spaces, in particular for Lp , 0 < p < 1. Section 3 is devoted to the law
of large numbers for squares of a r.e. in some function Banach lattices. On the
real line the LLN for squares is equivalent to the central limit theorem. This is
a classical result. We show that a similar relation holds true for some Banach
lattices too (see also [3] and [11]). We shall extensively use the definitions,
notations and results of [6] concerning Banach lattices.

2. Bochner Mean Square Deviation

Let us recall the definition of the Bochner mathematical expectation (Bochner
integral) in a Banach space B. A B-valued r.e. X (i.e., a strongly measurable
mapping) defined on a probability space (Ω,B,P) is called simple if it takes
only finite number of values. A r.e. X is said to have the Bochner mathematical
expectation if there exists a sequence of simple elements Xn such that E‖Xn −
X‖ → 0 as n →∞. In this case the Bochner mathematical expectation EX :=
limn→∞EXn. The expression EXn has an obvious meaning as a usual sum and
by lim we mean the norm limit. For details about the Bochner integral see ([2],
III.2). Note that for a strongly measurable r.e. X in a Banach space B the
Bochner mathematical expectation EX exists if and only if E‖X‖ < ∞.

Let B be a Banach lattice, x1, . . . , xn be a finite sequence in B. Then the

expression (
n∑

i=1
|xi|2)1/2 is defined and is an element of B (see [6], p. 42).

Let now X be a simple r.e. in B which takes values x1, . . . , xn with probabil-
ities p1, . . . , pn. We put

∆(X) =

(
n∑

i=1

pi|xi − EX|2
)1/2

.

Definition 1. Let X be a (strongly measurable) r.e. in a Banach lattice B.
We say that X has the Bochner mean square deviation if E‖X‖2 < ∞ and there
exists an element SX ∈ B such that for any sequence of a simple r.e. Xn in B
satisfying

E‖Xn −X‖2 → 0 as n →∞ (1)

we have ‖∆(Xn)−SX‖ → 0 as n →∞.

Remark 1. If X is a simple r.e. and SX exists, then SX = ∆(X).
In function Banach lattices

(SX)(t) = (E|X(t)|2)1/2 (2)

if EX = 0. More exactly, the following two propositions hold true.
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Proposition 1. Let X be a r.e. with values in a Banach lattice B of func-
tions on some set T , where the functionals ft(x) = x(t), t ∈ T, are defined and
continuous. For example, let B be a lattice of sequences or continuous func-
tions. If X has the Bochner mean square deviation and EX = 0, then (2) is
true for any t ∈ T .

Proof. Let Xn be a simple r.e. from Definition 1. Then (1) implies that for
every t ∈ T

E | |Xn(t)| − |X(t)| |2 = E | |ft(Xn)| − |ft(X)| |2
≤ E|ft(Xn −X)|2 ≤‖ ft ‖2 E ‖ Xn −X ‖2→ 0 as n →∞ .

Thus E|Xn(t)|2 → E|X(t)|2. Since EX = 0, we have EX(t) ≡ 0. Then, by
Definition 1, for every t ∈ T (E|Xn(t)|2)1/2 → (SX)(t) as n → ∞. Thus
(SX)(t) = (E|X(t)|2)1/2.

Proposition 2. Let B be a Banach lattice (of classes) of measurable func-
tions on a set T with a finite measure µ, continuously imbedded in L2(µ) and let
X be a B-valued r.e. If X has the Bochner mean square deviation and EX = 0,
then (2) is true for almost every t ∈ T .

Proof. Let Xn be a simple r.e. from Definition 1. Since B is continuously
imbedded in L2(µ), from (1) it follows that

E
∫

T

|Xn(t)−X(t)|2dµ → 0 as n →∞ . (3)

Definition 1 implies
∫

T

|(E|Xn(t)|2)1/2 − (SX)(t)|dµ → 0 as n →∞ . (4)

Therefore there is a sequence nk ↑ ∞ such that for almost every t ∈ T

(E|Xnk
(t)|2)1/2 → (SX)(t) as k →∞ . (5)

From (3)–(5) it follows that E|X(t)|2 exists, (E|Xnk
(t)|2)1/2 → (E|X(t)|2)1/2 as

k →∞ and (SX)(t) = (E|X(t)|2)1/2 for almost every t.

Remark 2. When considering a r.e. in a function Banach lattice B, the fol-
lowing question naturally arises. Let X be a r.e. in B. Is X(t) a r.v. for
any t? It follows from the proof of Proposition 2 that in the conditions of this
proposition X(t) is a r.v. for almost every t. See also Remark 5.

Definition 2. Let 1 ≤ p < ∞. A Banach lattice B is called p-convex if there
exists a constant D(p) = D(p)(B) such that for every n and for any elements
(xi)

n
1 ⊂ B we have

∥∥∥∥
( n∑

i=1

|xi|p
)1/p∥∥∥∥ ≤ D(p)

( n∑

i=1

‖xi‖p
)1/p
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and, similarly, B is called p-concave if for some constant D(p) = D(p)(B) the
converse inequality

( n∑

i=1

‖xi‖p
)1/p

≤ D(p)

∥∥∥∥
( n∑

n=1

|xi|p
)1/p∥∥∥∥

holds.

We shall also use the notion of p-concavification B(p) for a Banach lattice B.
Let us describe this notion (for details see [6], p. 54). As B(p) we take B with

the original order and operations x⊕y = (xp+yp)1/p, α¯x = α1/px. By αp

we mean sign(α)|α|p and (xp + yp)1/p is the element of B which corresponds
to the function f(s, t) = sign(sp + tp)|sp + tp|1/p (see [6], p. 53). The variable

‖x‖p = inf
{ n∑

i=1

‖xi‖p : |x| =
n∑

i=1

⊕|xi| , xi ∈ B , n = 1, 2, . . .
}

is a lattice norm in B(p) if B is a p-convex space. Moreover, for every x ∈ B

‖x‖p ≤ ‖x‖p ≤ (D(p))p‖x‖p . (6)

Lemma 1 (see [3]). Let B be a 2-convex Banach lattice. The identity map
Φ : B → B(2) is a homeomorphism. More exactly, for any elements x, y ∈ B

‖xª y‖2 ≤ ‖x− y‖‖|x|+ |y|‖ and ‖x− y‖ ≤
√

2D(2)‖xª y‖1/2
2 .

Proof. By (6), the elementary scalar inequality | sign(s)|s|2 − sign(t)|t|2|1/2 ≤
|s− t|1/2(|s|+ |t|)1/2 and the Hölder type inequality ([6], p. 43) we have

‖xª y‖2 ≤ ‖xª y‖2 = ‖(x2 − y2)1/2‖2 ≤ ‖x− y‖‖|x|+ |y|‖ .

For scalars the inequality |t − s| ≤ √
2|sign(t)t2 − sign(s)s2|1/2 is valid.

Therefore, by ([6], p.42), the definition of (x2 − y2)1/2 and (6), we have

‖x− y‖ ≤
√

2‖(x2 − y2)1/2‖ =
√

2‖xª y‖ ≤
√

2D(2)‖xª y‖1/2
2 .

The following theorem, corollary and example show that Definition 1 is suit-
able for 2-convex Banach lattices and probably for them only.

Theorem 1. Let X be a r.e. in a 2-convex separable Banach lattice B and let
E(2)X be the Bochner mathematical expectation of X in the lattice B(2). Then
X has the Bochner mean square deviation if and only if there exists E(2)X.
Moreover,

SX = E(2)|X − EX| . (7)

Proof. The existence of mean square deviation implies the existence of E‖X‖2,
i.e., (by (6)) E‖X‖2, i.e., E(2)X.

Conversely, the existence of E(2)X implies the existence of a simple r.e. (Xn)∞1
in B(2) such that E‖XnªX‖2 → 0 as n →∞. By Lemma 1, ‖Xn−
X‖2 ≤ 2(D(2))2‖Xn ªX‖2 , thus

E‖Xn −X‖2 → 0 and EXn → EX as n →∞ , (8)
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i.e., (1) is satisfied. For scalars the inequality ||t| − |s|| ≤ |t − s| is valid.
Therefore, by ([6], p. 42), such an inequality is valid for the elements of a
Banach lattice as well. Thus, by the first inequality of Lemma 1,

E‖|Xn − EXn| ª |X − EX|‖2 ≤ E‖(Xn − EXn)ª (X − EX)‖2

≤ E(‖Xn − EXn − (X − EX)‖ · ‖|Xn − EXn|+ |X − EX|‖)
≤ (E‖Xn − EXn −X + EX‖2)1/2 · (E‖|Xn − EXn|+ |X − EX|‖2)1/2.

Using (8) we obtain that E‖|Xn − EXn| ª |X − EX|‖2 → 0 as n → ∞.
Now, by the triangle inequality, the sequence E(2)|Xn−EXn| converges in B(2)

to E(2)|X − EX|. For simple elements (7) follows from Definition 1 and the
definition of B(2). Then, by Lemma 1, the sequence SXn = E(2)|Xn − EXn|
converges to E(2)|X − EX| as n → ∞ in B. It implies (7) also for the r.e.
X.

Corollary 1. The mean square deviation of a r.e. X in a 2-convex separable
Banach lattice exists if and only if E‖X‖2 < ∞.

Example. In the space lp, 1 ≤ p < 2, the r.e. X which is identically equal
to zero, has not the Bochner mean square deviation.

Indeed, let Xn be a symmetric r.e. taking values ±n
1
2
− 1

p ei with probabilities
1
2n

, i = 1, . . . , n, where (ei) is the standard basis of lp . Then E‖Xn−X‖2 =

2n(n
1
2
− 1

p )2 1
2n
→ 0 as n →∞ but

∑n
i=1(

1
n
(n1/2−1/p)2)1/2ei 9 0 . Of course,

for the elements Yn ≡ 0 we have E‖Yn −X‖2 = 0.

Remark 3. The following two statements are the corollaries of the results of
[7] and Theorem 1. Recall first the definition. Let X be a (strongly measurable)
weak second order r.e. in B. Then for any r.v. ξ with Eξ2 < ∞ the Pettis
integral Ẽ(ξX) exists (see [12]). Suppose now ẼX = 0. The Pettis mean square
deviation is defined by the formula

S̃X = sup
{
Ẽ(ξX) : ξ is a r. v., E|ξ|2 ≤ 1

}
.

1. Let X be a r.e. in a 2-convex separable Banach lattice with EX = 0.
Then the Pettis mean square deviation S̃X exists if and only if there exists the
Pettis integral Ẽ(2)|X|. Moreover,

S̃X = Ẽ(2)|X| .

2. Let X be a r.e. in a 2-convex separable Banach lattice with EX = 0.
If there exists the Bochner mean square deviation SX, then there exists the
Pettis mean square deviation S̃X. Moreover,

S̃X = SX .
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3. Law of Large Numbers for Squares

From now on we shall denote by B a Köthe function space ([6], p.28), i.e.,
the space (of classes) of locally integrable functions on a complete σ-finite mea-
surable space (T, Σ, µ) for which the following conditions hold:

(1) If |x(t)| 6 |y(t)| a.e. on T with x measurable and y ∈ B, then x ∈ B
and ‖x‖ 6 ‖y‖.

(2) For every A ∈ Σ with µ(A) < ∞ the characteristic function χA of A
belongs to B.

Let Xi = (Xi(t), t ∈ T ) be a sequence of independent r.e. in a separable

Köthe function space B, EXi = 0, and Zn :=
(

1
n

n∑
i=1
|Xi|2

) 1
2 . Then Zn(t) =

(
1
n

n∑
i=1
|Xi(t)|2

) 1
2 for almost every t. Put σi(t) = (E|Xi(t)|2) 1

2 .

Definition 3. We say that (Xi) satisfies the law of large numbers for squares
if

∥∥∥∥Zn(t)−
(

1

n

n∑

i=1

|σi(t)|2
) 1

2
∥∥∥∥

a.s.−→ 0 (9)

or
∥∥∥∥Zn(t)−

(
1

n

n∑

i=1

|σi(t)|2
) 1

2
∥∥∥∥

P−→ 0 (10)

as n →∞, where
a.s.−→ (

P−→) means the convergence almost surely (in probabil-
ity).

Relation (9) is naturally called the strong LLN and (10) the weak LLN.

Remark 4. If (Xi) are independent copies of a r.e. X, then formulas (9), (10)
are equivalent to

‖Zn(t)− σ(t)‖ a.s.−→ 0 (11)

and

‖Zn(t)− σ(t)‖ P−→ 0 (12)

as n →∞, where σ(t) := (E|X(t)|2) 1
2 .

If (11) or (12) is satisfied, then we say that X satisfies the strong (resp. weak)
LLN for squares.

Remark 5. In connection with Definition 3 the question on the measurability
of Zn arises, i.e., whether this variable is a r.e. if Xi are r.e. The answer is
affirmative at least in separable Banach lattices [8]. Obviously, the existence of
EXi implies that Xi are separable valued.
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Remark 6. As in Proposition 2, a question naturally arises whether X(t) is
a r.v. for almost every t if X is a r.e. One can easily to check that this is so
if EX exists. Indeed, for a simple r.e. this follows from the definition. Let Xn

be simple r.e. such that E‖Xn −X‖ → 0 as n → ∞. Then Xnk
→ X a.s. for

some subsequence (nk) . So a.s. Xnk
(t) → X(t) for almost every t and X(t) is

a r.v. for almost every t. In general, we take

X(m) =

{
X if ‖X‖ ≤ m,
0 if ‖X‖ > m .

Then a.s. ‖X(m) −X‖ → 0, hence

P(X(m)(t) → X(t) for almost all t) = 1 .

If X is separable-valued, then EX(m) exists, hence X(m)(t) is a r.e. for almost
all t. So X(t) is a r.v. for almost all t.

Theorem 2. Let X be a r.e. in a separable q-concave Köthe function space

B, 2 6 q < ∞, EX = 0, {(E|X(t)|q) 1
q , t ∈ T} ∈ B and let (Xi) be the

independent copies of X. Then

1. X satisfies the CLT, i.e., the sequence n−
1
2

∑n
i=1 Xi weakly converges to

a Gaussian distribution in B.
2. X satisfies the weak LLN for squares (12) and for q > 2

lim
n→∞E‖Zn(t)− σ(t)‖q = 0 . (13)

Proof. 1. Let us consider the space B(Lq) of functions X(ω, t) with the norm

‖X‖B(Lq) = ‖(E|X(ω, t)|q) 1
q ‖. Since B is a q-concave Köthe function space

(q < ∞), B has a σ-order continuous norm (see [6], p.83). Thus the cross-
product B ⊗ Lq is dense in B(Lq), i.e., for any ε > 0 there is X(ε) ∈ B ⊗ Lq

such that

‖X −X(ε)‖B(Lq) < ε , (14)

moreover, we can choose X(ε) as a function of the form

X(ε) =
{
X(ε)(t) =

m∑

k=1

χAk
(t)ξk, t ∈ T

}
, (15)

where χAk
(t) ∈ B denotes the characteristic function of a set Ak ∈ Σ, Ak∩Al =

∅ for k 6= l, ξk ∈ Lq(Ω,B,P) ([1], p. 85).
If EX = 0, we can assume EX(ε) = 0 too. Indeed, by (14)

‖EX(ε)‖ = ‖EX − EX(ε)‖ ≤ ‖E|X −X(ε)|‖ ≤ ‖X −X(ε)‖B(Lq) < ε .

So, putting X̃(ε) = X(ε) − EX(ε) we have X̃(ε) ∈ B ⊗ Lq , EX̃(ε) = 0 and

‖X−X̃(ε)‖B(Lq) = ‖X−(X(ε)−EX(ε))‖B(Lq) ≤ ‖X−X(ε)‖B(Lq)+‖EX(ε)‖ < 2ε .

Hence we can take X̃(ε) instead of X(ε).
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Let (X
(ε)
i ) be the independent copies of X(ε) , Sn =

∑n
i=1 Xi and let S(ε)

n =∑n
i=1 X

(ε)
i . The main step in the proof of Theorem 2 is connected with the

estimation [8]

(E‖Y (t)‖q)
1
q ≤ D(q)‖(E|Y (t)|q) 1

q ‖ , (16)

which is valid for every r.e. Y (t) in a q-concave Köthe function space B, q < ∞.
From (16) we have

(E‖Sn(t)− S(ε)
n (t)‖q)

1
q ≤ D(q)

∥∥∥∥
(
E

∣∣∣∣
n∑

i=1

(Xi(t)−X
(ε)
i (t))

∣∣∣∣
q) 1

q
∥∥∥∥ . (17)

To estimate the right side of (17) we use the well known Kadec inequality [5]:
Let q > 1, ξi be a K-unconditional sequence in Lq(Ω,B,P) and p = min(q, 2).
Then

(
E

∣∣∣∣
n∑

i=1

ξi

∣∣∣∣
q) 1

q ≤ CqK
( n∑

i=1

(
E|ξi|q

) p
q

) 1
p

, (18)

moreover, if q 6 2, then Cq = 1.
Since (Xi) are independent and EXi = 0, the r.v. (Xi(t), i > 1) are inde-

pendent for almost every t and EXi(t) = 0 a.e. Obviously, every sequence of
independent r.v. ξi, Eξi = 0, is 2-unconditional in Lq. So, since q > 2, for
almost every t

(
E

∣∣∣∣
n∑

i=1

(Xi(t)−X
(ε)
i (t))

∣∣∣∣
q) 1

q ≤ 2Cq

√
n

(
E|X(t)−X(ε)(t)|q

) 1
q . (19)

Inequalities (19), (17) and (14) imply

(
E

∥∥∥∥∥
Sn − S(ε)

n√
n

∥∥∥∥∥

q) 1
q

≤ 2CqD(q)‖X −X(ε)‖B(Lq) ≤ 2CqD(q)ε .

Obviously, X(ε) satisfies the CLT. Since ε > 0 is arbitrary, by the known Pisier
result (see [11], Theorem 4.1), the last inequality implies that X satisfies the
CLT.

2. Let q > 2. The weak LLN (12) will be established if we prove (13). From
an elementary scalar inequality

|s− t| ≤ |s2 − t2| 12 , s, t ≥ 0

and (16) we obtain

(E‖Zn(t)−σ(t)‖q)
1
q ≤ D(q)‖(E|Zn(t)−σ(t)|q) 1

q ‖ ≤ D(q)‖(E|Z2
n(t)−σ2(t)| q2 ) 1

q ‖ .

To estimate the last term of this inequality we apply (18). Since (Xi) are
independent, X2

i (t) − σ2(t) are independent for almost every t and E(X2
i (t) −
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σ2(t)) = 0. So for p̃ = min(q/2, 2) we have

E|Z2
n(t)− σ2(t)| q2 ≤ C ′

q




n∑

i=1


E

∣∣∣∣∣
X2

i (t)− σ2(t)

n

∣∣∣∣∣

q
2




2p̃
q




q
2p̃

≤ C ′
qE|X2(t)− σ2(t)| q2 · n1−p̃.

Since {(E|X2(t)− σ2(t)| q2 ) 1
q , t ∈ T} ∈ B, it implies (13).

The case q = 2 requires an individual consideration. Let X(ε) be defined
by (15), and let inequality (14) be fulfilled. Put σ(ε)(t) = (E|X(ε)(t)|2) 1

2 and

Z(ε)
n (t) = ( 1

n

∑n
i=1 |X(ε)

i (t)|2) 1
2 . By the triangle inequality we have

‖Zn(t)− σ(t)‖ ≤ ‖Zn(t)− Z(ε)
n (t)‖+ ‖Z(ε)

n (t)− σ(ε)(t)‖
+ ‖σ(ε)(t)− σ(t)‖ . (20)

For the first summand in the right side of (20)

E‖Zn(t)− Z(ε)
n (t)‖ ≤ E

∥∥∥∥
(

1

n

n∑

i=1

|Xi(t)−X
(ε)
i (t)|2

) 1
2
∥∥∥∥

≤
(
E

∥∥∥∥
(

1

n

n∑

i=1

|Xi(t)−X
(ε)
i (t)|2

) 1
2
∥∥∥∥
2) 1

2

(by(16))

≤ D(2)‖(E|X(t)−X(ε)(t)|2) 1
2‖

= D(2)‖X −X(ε)‖B(L2) < D(2)ε . (21)

From (15) it follows that

|X(ε)(t)|2 =
m∑

k=1

χAk
(t)|ξk|2 and σ(ε)(t) =

m∑

k=1

χAk
(t)(E|ξk|2) 1

2 ,

so a.s.

‖Z(ε)
n (t)− σ(ε)(t)‖ → 0 as n →∞ . (22)

By the triangle inequality

|σ(ε)(t)− σ(t)| ≤ (E|X(ε)(t)−X(t)|2) 1
2

for any t. This inequality and (14) imply

‖σ(ε)(t)− σ(t)‖ ≤ ‖X(ε)(t)−X(t)‖B(L2) < ε . (23)

Now from (20)–(23) follows (12).

Remark 7. The analysis of this proof shows that one can generalize part 2 of
Theorem 2 as follows. Let (Xi) be a sequence of independent random elements
in a separable q-concave Köthe function space B, 2 < q < ∞, EXi = 0 and let
there exist an element u ∈ B such that for every i ≥ 1

(E|Xi(t)|q)
1
q ≤ u(t) , t ∈ T .
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Then (Xi) satisfies the weak LLN (12).

To prove the next theorem we shall use following lemma.

Lemma 2. Let (ηi) be a sequence of independent random variables, Eηi = 0,
1 < p ≤ 2, Sn =

∑n
i=1 ηi. Then

E sup
n≥1

Sn

n
≤ 1 + 2pζ2(p)mp ,

where ζ(z) =
∑∞

k=1
1
kz is the Riemann zeta-function and mp = sup

i≥1
E|ηi|p .

Proof. We use the inequality (see [13], Theorem 14)

P
(

max
1≤k≤n

akSk ≥ s
)

≤ 1

ϕ(s)

{
ϕ(an) · Eϕ(|Sn|) +

n−1∑

k=1

(ϕ(ak)− ϕ(ak+1))Eϕ(|Sk|)
}

, (24)

where a1 ≥ a2 ≥ . . . ≥ an > 0 , ϕ(s) is a nondecreasing and convex function
defined on the positive semi-axis such that ϕ(+0) = 0 and ϕ(s · t) ≤ ϕ(s) ·ϕ(t).
Put in (24) ak = 1

k
and ϕ(s) = sp. Then

P
(

max
1≤k≤n

Sk

k
≥ s

)
≤ 1

sp

{
E|Sn|p

np
+

n−1∑

k=1

(k + 1)p − kp

kp(k + 1)p
E|Sk|p

}
.

This formula, the elementary equality

(k + 1)p − kp = p(k + θ)p−1, 0 ≤ θ ≤ 1 ,

and (18) give

P
(

max
1≤k≤n

Sk

k
≥ s

)
≤ 2

sp

(
mp

np−1
+ p

n−1∑

k=1

mp

kp−1(k + 1)

)
≤ 2mp

sp

(
1

np−1
+ p

n−1∑

k=1

1

kp

)
.

Hence

P
(

sup
n≥1

Sn

n
≥ s

)
≤ 2pζ(p)

mp

sp
.

From the last inequality we have

E sup
n≥1

Sn

n
≤

∞∑

k=0

P
(

sup
n≥1

Sn

n
≥ k

)
≤ 1 +

∞∑

k=1

2pζ(p)
mp

kp
= 1 + 2pζ2(p)mp .

Theorem 3. Let (Xi) be a sequence of independent random elements in a
separable q-concave Köthe function space B, 2 ≤ q < ∞, and EXi = 0 for every
i. If there exist a number r > q and an element u ∈ B such that for every i ≥ 1

(E|Xi(t)|r) 1
r ≤ u(t), t ∈ T , (25)

then (Xi) satisfies the strong LLN for squares (9).
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Proof. From the strong LLN for real-valued r.v. ([10], Ch. IX, §3) and (25) we
have for any t ∈ T

Zn(t)−
(

1

n

n∑

i=1

E|Xi(t)|2
) 1

2
a.s.−→ 0 as n →∞ . (26)

Now we shall show that a.s.

sup
n≥1

∣∣∣∣∣∣
Zn(t)−

(
1

n

n∑

i=1

E|Xi(t)|2
) 1

2

∣∣∣∣∣∣
∈ B . (27)

Since under our conditions B has an order continuous norm, for B the abstract
version of the Lebesgue theorem on majorized convergence ([1], p.72) holds true.
Thus (26), (27) imply the strong LLN (9).

From (25) it follows that in order to prove (27) it is sufficient to show that
a.s.

{
sup
n≥1

Zn(t), t ∈ T

}
∈ B . (28)

For this purpose apply first the well known inequality
(

1

n

n∑

i=1

si

)p

≤ 1

n

n∑

i=1

sp
i for p ≥ 1, si ≥ 0 .

We have
∣∣∣ sup

n≥1
Zn(t)

∣∣∣
q ≤ sup

n≥1

1

n

n∑

i=1

|Xi(t)|q ≤ |u(t)|q + |u(t)|q sup
n≥1

1

n

n∑

i=1

ηi(t) , (29)

where

ηi(t) =

{ |Xi(t)|q−E|Xi(t)|q
|u(t)|q if u(t) > 0 ,

0 if u(t) = 0 .
(30)

Put in Lemma 2 p = r/q , 2pζ2(p) = cp and determine ηi(t) by (30). Without
loss of generality we can assume that 1 < p < 2. From (29) and Lemma 2 we
get for every t ∈ T

E
∣∣∣ sup

n≥1
Zn(t)

∣∣∣
q ≤ |u(t)|q + |u(t)|q(1 + cpmp(t)) ≤ |u(t)|q(2 + cpmp(t)) . (31)

It is not difficult to verify that mp(t) = supn≥1 E|ηn(t)|p ≤ 2 . This inequality
and estimations (16), (31) allow us to obtain (28). Indeed,

(
E

∥∥∥ sup
n≥1

Zn(t)
∥∥∥

q) 1
q ≤ D(q)

∥∥∥
(
E

∣∣∣ sup
n≥1

Zn(t)
∣∣∣
q) 1

q
∥∥∥ ≤ [2(1 + cp)]

1
q D(q)‖u(t)‖ < ∞ ,

which gives (28).

Remark 8. Counterexamples to the strong LLN for real valued r.v. [10] show
that in Theorem 3 we cannot replace the condition r > q by r ≥ q.
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