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CESARO MEANS OF TRIGONOMETRIC FOURIER SERIES

U. GOGINAVA

Abstract. L. Zhizhiashvili proved that if f € H} for some p, 1 < p <
oo, and @ € (0,1), then the LP-deviation of f from its Cesaro mean is
O(n“w(1/n)) where w(-) is a modulus of continuity. In this paper we show
that this estimation is non-amplifiable for p = 1.
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1. INTRODUCTION

Let P, 1 < p < oo, denote the collection of all measurable, 27-periodic
functions defined on the [0, 27) with the norm

2 1/p
11, = ( / If(:v)lp) < oo,

we write L* instead of C, the space of continuous and 27-periodic functions
given on [0,27) with the norm || f||e = || fllo = sup |f (z)].

z€[0,27)

Let f € LP, 1 < p < o0. The expression
w (o, f), = sup [f (- +h) = O,
|h|<d

is called the LP-modulus of continuity. If w (J) is a modulus of continuity, then
Hy denotes the class of functions f € LPfor which w(d,f), = O(w(J)) as

§ — 0+. In particular, HY = Hgﬁ for w(6) = 6° (8 > 0) and HY = H) for
w(d) = 0.

The Cesaro (C, a)-means of trigonometric Fourier series are defined as follows:

1 n
on (f,r) = e Z A%, (ag cos kx + by sin kx) ,

n k=0
where ag, ag, by, k = 1,2, ..., are the Fourier coefficients and
Ao g latclatn) g g
0 — “r4in T | ) ) ) gt
n!

It is well-known that ([1], Ch. 3)
cn® < AN < con® (1)
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with some positive constants ¢; and ¢y depending on a.

For the uniform negative order Cesaro summability of trigonometric Fourier
series the following result of Zygmund [2] is well-known: if f € H ;jf and
a € (0, /), then the trigonometric Fourier series of the function f is uniformly
(C, —a)-summable to f.

L. Zhizhiashvili ([3], Part. 1, Ch. 4) established approximate properties of
Cesaro (C, —a)-means with a € (—o0,1) of trigonometric Fourier series. In
particular, for a € (0,1) he proved the following assertion.

Theorem A. Let a € (0,1) and f € Hy for some p, 1 < p < oo, then
|f =on (D) = O(w/n)n). (2)

T. Akhobadze [4] has proved that this estimation is non-amplifiable for p =
oo. In the case p = 1 the question of the non-amplifiability of estimation (2)
was open (see [3], p. 151). A complete answer to the question is given in this
paper.

2. FORMULATION OF THE MAIN RESULTS
Let {lx : k>1} be a subsequence of natural numbers such that lliimw (1/D) 1=
Tim o (1/0) .

Theorem 1. a) Let “Y 1 00 as § — 04+ and a € (0,1). Then there exists
a function fo € HY such that

limeO -0, (fO)H1 S0

koo w (L/1k) I
b) Let a € (0,1). Then there exists a function gy € H? such that

m”gﬁ — 0y (90>H1

Jim e > 0.
Theorem 2. Let o € (0,1). Then there exists a function f € HY such that
f—o
e,

k—o00 (1/lk) la

Corollary 1. Let a € (0,1). For all trigonometric Fourier series of the
class HY to be L'-summable by the Cesaro (C,—a)-method it is necessary and
sufficient that

lim w(1/n)n® = 0.

Corollary 2. Let a € (0,1). Then there exists a continuous function f for
which w (9, f) = O (%) and

T ||f = oz (£, > 0.

n—oo 1
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3. PROOFS
Proof of Theorem 1. a) We can define the sequence {ny : k>1} C {l : k>1}
satisfying the properties
1 1 1
w ( ) < -w () ; (3)
Nk41 2 \ng
1

Consider the function f; defined by

Z < )smnkx

From (3) it is evident that fy € C. First we shall prove that f, € H. Let
h € [1/ngs41,1/ns). Since = (61) < 2“’(52) 0 < 0y < 9y, from (3) and (4) it follows
that

[fo (x+h) = fo(x)] =2

o < 1 ) . ngh 2+ h
Z w | — | sin coS
k=1 T 2 2

<Z ( )nkh+2z (1)

k=s+1 Nk

< 2w <7”j) nsh + 4w <n1 ) <Adw (h) + 4w (h) = 8w (h) .

Since by, (fo) =w (i) , we obtain

2w

/ {a;:‘ (fo;z) — fo (x)} sin ngyrdx

0

Ha;k"‘ (fo) = foH1 >

2

> /0;; (fo;x) sinngzdr| — 7

0

[bny. (fo)]

21

ZAnk ]/ (a; (fo) cosjz + b (fo)sin jx) sin ngadx

nk]O 0

=0 |bn, (Jo)| = Aalnk(fo)! ™ [bn (fo)

- A:‘”(rjk) B W(rjk)' (5)

ng

b) Let

> sin kx

k=1
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It is well-known ([1], Ch. I) that go () is the function of bounded variation.
According to the Hardy and Littlewood Theorem [5] we conclude that g () €
e

Since by, (go) = %, we write

27
%f@@-%%Z/%ﬁW%w%@M@hmmm
0
2T
> /0;‘3‘ (go; x) sin nzdx| — 7 |by, (go)|
0
™ 1 7

~-Z (6)

“n n

= 1 P (o) = b (g0)] = =

Owing to (1), (5), and (6) the proof of Theorem 1 complete. [J

The validity of Theorem 2 and Corollary 2 follows immediately from Theo-
rem 1. As for Corollary 1, it follows from Theorem A and Theorem 1.
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