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ON OBTAINING DUAL SEQUENCES VIA
QUASI-MONOMIALITY

YOUSSÈF BEN CHEIKH

Abstract. In this paper, we introduce a method to obtain the dual sequence
of a given polynomial set using the lowering operator associated with the
involved polynomials. As application, we derive polynomial expansions of
analytic functions. The particular case corresponding to Boas–Buck polyno-
mials allows us to unify many polynomial expansions of analytic functions in
the literature. This method can be useful in studying many problems arising
in the theory of polynomials as the so-called connection and linearization
problems.
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1. Introduction

Let P be the vector space of polynomials with coefficients in C and let P ′
be its dual. We denote by 〈L, f〉 the effect of the functional L ∈ P ′ on the
polynomial f ∈ P . Let {Qn}n≥0 be a polynomial set, that is deg Qn = n. Its
dual sequence {Ln}n≥0 is defined by

〈Ln, Qm〉 = δnm, n,m ≥ 0. (1.1)

One of the problems related to this notion asks to express explicitly the dual
sequence of a given polynomial set. Such a problem arises in various fields of
mathematics. Among the methods developed to this end, we could mention
the one which requires that the polynomial set {Qm}m≥0 be orthogonal. Then
〈Ln, f〉, n ≥ 0, are the corresponding Fourier coefficients. Another one (see, for
instance, [16]), which was deduced from the inversion formula

zk =
∞∑

n=0

πk,nQn(z), k = 0, 1, 2, . . . ,

provides

〈Ln, f〉 =
∞∑

k=0

πk,nf
(k)(0)/k!.

Our purpose in this work is to present a further method to construct the dual
sequence of a given polynomial set for the general case.
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In the previous paper [2], we show that every polynomial set {Qn}n≥0 is
quasi-monomial. That is to say, there exist a lowering operator σ and a rising
operator τ , independent of n, such that

σ (Qn) (x) = nQn−1(x) and τ (Qn(x)) = Qn+1(x). (1.2)

σ and τ are respectively in Λ(−1) and Λ(1) where Λ(j), j being an integer, denotes
the space of operators acting on analytic functions that augment (resp. reduce)
the degree of every polynomial by exactly j if j ≥ 0 (resp. j ≤ 0). That includes
the fact that σ(1) = 0.

In this paper, starting from a polynomial set, we construct its dual sequence
in terms of its lowering operator. We state the following main result.

Theorem 1.1. Let {Qn}n≥0 be a polynomial set, let σ be its lowering oper-
ator, and let {Ln}n≥0 be its dual sequence. Then there exists a power series
ϕ(t) =

∑∞
k=0 αntn, α0 6= 0, such that

〈Ln, f〉= 1

n!
[σnϕ(σ)(f)(x)]x=0 =

σnϕ(σ)

n!
f(0), n=0, 1, . . . , f ∈ P . (1.3)

The outline of the paper is as follows. In Section 2, we prove Theorem 1.1
from which we deduce an expansion theorem in Section 3 where we also apply
the obtained result to Boas–Buck polynomial sets. That leads us to unify many
examples of polynomial expansions of analytic functions in the literature. In
Section 4, we discuss the possibility of using the results of this paper in studying
some problems arising in the theory of polynomials.

2. Proof of the Main Result

Let us introduce firstly the following notion

Definition 2.1. Let σ ∈ Λ(−1). A polynomial set {Pn}n≥0 is called a se-
quence of basic polynomials for σ if:

(i) P0(x) = 1,
(ii) Pn(0) = 0 whenever n > 0,
(iii) σPn(x) = nPn−1(x).
As a consequence of this definition, we mention the orthogonality relation

σmPn(0) = n!δnm, n,m = 0, 1, . . . . (2.1)

To prove Theorem 1.1, we need the following two lemmas.

Lemma 2.1. Every σ ∈ Λ(−1) has a sequence of basic polynomials

Proof. Put P0(x) = 1 and define Pn(x), n ≥ 1, recurrently by the identity

anPn(x) = xn −
n−1∑

k=0

1

k!

[
σk (ξn)

]
ξ=0

Pk(x), n ≥ 1, (2.2)

where an = σn(xn)
n!

6= 0. Inducing on n, we verify that this sequence satisfies the
conditions given by Definition 2.1.
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Lemma 2.2. Let {Qn}n≥0 be a polynomial set and let σ be its lowering op-
erator. Let {Pn}n≥0 be a sequence of basic polynomials for σ. Then there exists
a power series ϕ(t) =

∑∞
k=0 αntn, α0 6= 0, such that

ϕ(σ)(Qn) = Pn, n = 0, 1, . . . (2.3)

Proof. Since {Qn}n≥0 and {Pn}n≥0 are two polynomial sets, it is possible to
write

Pn(x) =
n∑

k=0

αn,k
n!

(n− k)!
Qn−k(x), n = 0, 1, . . . , (2.4)

where the coefficients αn,k depend on n and k and αn,0 6= 0. We need to prove
that these coefficients are independent of n. Apply the operator σ to each
member of (2.4) to obtain

Pn−1(x) =
n−1∑

k=0

αn,k
(n− 1)!

(n− 1− k)!
Qn−1−k(x), n = 1, 2, . . . , (2.5)

since σQ0 = 0. Shifting the index n −→ n + 1 in (2.5), we have

Pn(x) =
n∑

k=0

αn+1,k
(n)!

(n− k)!
Qn−k(x), n = 0, 1, 2, . . . (2.6)

Compare (2.4) and (2.6) to note that αn,k = αn+1,k for all k and n, which means
that αn,k = αk independent of n. That leads us to write (2.4) in the form

Pn(x) =
n∑

k=0

αkσ
kQn(x) =

( ∞∑

k=0

αkσ
k

)
(Qn) (x), n = 0, 1, . . . , (2.7)

since σmQn(x) = 0 for m > n, which finishes the proof.

Proof of Theorem 1.1. Let {Qn}n≥0 be a polynomial set. From Theorem 2.1
in [2] it follows that there exists a lowering operator σ ∈ Λ(−1) such that
σQn = nQn−1. According to Lemma 2.1, there exists a sequence {Pn}n≥0

of basic polynomials for σ, and according to Lemma 2.2, there exists a power
series ϕ(t) =

∑∞
k=0 αntn, α0 6= 0, satisfying (2.3). Define a sequence of linear

functionals {Ln}n≥0 as

〈Ln, f〉 =
1

n!
[σnϕ(σ)(f)(x)]x=0 =

σnϕ(σ)

n!
f(0), n = 0, 1, . . . ,

where f is a polynomial. From (2.1) and (2.3), we have

〈Ln, Qm〉 =
1

n!
σnϕ(σ)(Qm)(0) =

1

n!
σn(Pm)(0) = δnm,

which finishes the proof.
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3. Polynomial Expansions of Analytic Functions

Let {Qn}n≥0 be a polynomial set. Suppose that we want to represent a given
analytic function at the origin f(z) as a series

∑
cnQn(z). Let us consider

{Ln}n≥0 the dual sequence of {Qn}n≥0. By continuity, the linear functionals
Ln, n ≥ 0, can be extended to the space of formal power series C [[X]]. Then
the function f can be represented by the formal series

f(z) =
∞∑

n=0

〈Ln, f〉Qn(z). (3.1)

There is an extensive literature devoted to the study of the convergence of
this type of expansions, in particular [3], where the authors used the so-called
“method of kernel expansion” to express explicitly 〈Ln, f〉. This method consists
in choosing a suitable sequence of functions gn(ω) to define the kernel

K(z, ω) =
∞∑

n=0

Qn(z)gn(ω).

If f(z) = 1
2iπ

∫
Γ K(z, ω)F (ω)dω for a suitable function F and a closed contour

Γ, then

〈Ln, f〉 =
1

2iπ

∫

Γ

Qn(ω)F (ω)dω.

Now, if we apply Theorem 1.1 we obtain a further method to construct the
sequence {Ln}n≥0 for the general case from which we deduce the following ex-
pansion theorem.

Theorem 3.1. Let {Qn}n≥0 be a polynomial set with lowering operator σ.
Then there exists a power series ϕ(t) =

∑∞
k=0 αntn, α0 6= 0, such that every

analytic function f has the expansion

f(z) =
∞∑

n=0

σnϕ(σ)f(0)

n!
Qn(z). (3.2)

If, moreover, the translation operator Ta commutates with σ, then

f(z + a) =
∞∑

n=0

σnϕ(σ)f(a)

n!
Qn(z). (3.3)

Notice that the problem of the convergence of series (3.2) or (3.3) is to be
studied separately for each polynomial set {Qn}n≥0. All the operations we per-
form in this paper are formal and we pay no attention to convergence problems.
Next, we apply Theorem 3.1 to some classes of polynomial sets given by their
generating functions.

Corollary 3.1. Let {Qn}n≥0 be a Boas–Buck polynomial set generated by the
formal relation [3]

G(x, t) = A(t)B (xC(t)) =
∞∑

n=0

Qn(x)

n!
tn, (3.4)
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where

A(t) =
∞∑

k=0

akt
k, B(z) =

∞∑

k=0

bkz
k, and C(t) =

∞∑

k=0

ckt
k+1 (3.5)

are three formal power series with the condition a0c0bk 6= 0 for all k.
Let ν := νx ∈ Λ(−1) such that

νB(xt) = tB(xt). (3.6)

Put σ = C∗(ν) where C∗ is the inverse of C, i.e.,

C∗(C(t)) = C(C∗(t)) = t, with C∗(t) =
∞∑

n=0

c∗ntn+1; c∗0 6= 0.

Then every analytic function f has the expansion

f(z) =
∞∑

n=0

σn

A(σ)
f(0)

Qn(z)

n!
. (3.7)

If, moreover, the translation operator Ta commutates with σ then

f(z + a) =
∞∑

n=0

σn

A(σ)
f(a)

Qn(z)

n!
. (3.8)

Proof. From Corollary 3.2 in [2], it follows that σQn = nQn−1. It is easy to
verify that the polynomial set {Pn(x)}n≥0 generated by

G0(x, t) = B (xC(t)) =
∞∑

n=0

Pn(x)

n!
tn, (3.9)

is a sequence of basic polynomials for σ. From the relations G0(x, t) = 1
A(t)

G(x, t)

and σkQn = n!
(n−k)!

Qn−k, we deduce, according to the notation of Theorem 3.1,

that ϕ(σ) = 1
A(σ)

, and consequently, expansion (3.2) is reduced to (3.7).

Notice that some works, based on umbral calculus, stated results similar to
this theorem. The authors took as starting points invariant operators or shift-
invariant operators (cf., for instance, [9, 10, 11, 13]).

Two particular cases of Boas–Buck polynomial sets are worth to note. The
first one is the Brenke set where C(t) = t; then σ = ν. The second one
corresponds to Sheffer polynomials, where B(t) = et; then ν = D, the derivative
operator. Many examples of polynomial expansions of analytic functions in the
literature may be deduced from Corollary 3.2 applied to Sheffer polynomials.
Below, we recall some of them.

Example 1: Taylor series. The polynomial set {Qn(x) = xn}n≥0 is gen-
erated by G0(x, t) = ext. For this case, we have σ = D and A(σ) = 1; then
expansion (3.7) is reduced to the well known Taylor series

f(z) =
∞∑

n=0

f (n)(0)

n!
zn. (3.10)
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Example 2: Newton series. The polynomial set

{
Qn(x) = n!

(
x
n

)}

n≥0

is generated by G0(x, t) = exp (x log(1 + t)). For this case, we have C(t) =
log(1 + t) so C∗(t) = et − 1 and

σ = C∗(D) = eD − 1 = T1 − 1 = ∆,

where ∆ is the difference operator defined by ∆f(x) = f(x+1)− f(x), f being
an analytic function. Then expansion (3.7) is reduced to the Newton series [7]

f(z) =
∞∑

n=0

∆nf(0)

(
z
n

)
=

∞∑

n=0

∆nf(0)

n!
z(z − 1) . . . (z − n + 1), (3.11)

where

∆nf(0) = (−1)n
n∑

k=0

(
n
k

)
(−1)kf(k).

Example 3: Abel series. The polynomial set {Qn(x) = x(x− nβ)n−1}n≥0

is generated by G0(x, t) = exp (xC(t)) where C(t) is such that C∗(t) = teβt. For
this case, we have σ = C∗(D) = DeβD = DTβ. Then expansion (3.7) is reduced
to the Abel series [15]

f(z) =
∞∑

n=0

f (n)(nβ)

n!
z(z − nβ)n−1. (3.12)

Example 4: Buck series. The polynomial set
{

Qn(x) = (n− 1)!x

(
x− βn− 1

n− 1

)}

n≥0

is generated by G0(x, t)=exp (xC(t)) where C(t) is such that C∗(t)=(et−1) eβt.
For this case, we have

σ = C∗(D) =
(
eD − 1

)
eβD = (T1 − 1) Tβ = ∆Tβ.

Then expansion (3.7) is reduced to the Buck series [4]

f(z) = f(0) +
∞∑

n=1

∆nf(βn)
z

n

(
z − βn− 1

n− 1

)
, (3.13)

where

∆nf(βn) = (−1)n
n∑

k=0

(
n
k

)
(−1)kf(βn + k).

For β = 0 (resp. β = −1
2

or β = 1), we obtain the Newton series (resp. the
Stirling series or the Gelfond series).
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Example 5: Bernoulli series. The Bernoulli polynomial set {Qn = Bn}n≥0

is generated by G(x, t) = t
et−1

exp (xt). For this case, we have σ = D and
1

A(σ)
= eD−1

D
= ∆

D
. Then expansion (3.8) is reduced to the Bernoulli series [7]

f(z + u) =

u+1∫

u

f(t)dt +
∞∑

n=1

∆Dn−1f(u)

n!
Bn(z). (3.14)

Example 6: Boole series. The Boole polynomial set {Qn = ξn}n≥0 is
generated by G(x, t) = 1

1+ t
2

exp (x log(1 + t)). For this case, we have σ = ∆

(as for the second example) and 1
A(σ)

= 1 + 1
2
∆ = M where M designates the

operator of the mean that is Mf(x) = 1
2
(f(x) + f(x + 1)). Then expansion

(3.8) is reduced to the Boole series [7]

f(z + u) =
∞∑

n=0

M∆nf(u)

n!
ξn(z). (3.15)

Example 7: Frappier series. The Frappier polynomial set {Qn = Φn,α}n≥0

is generated by G0(x, t) = exp (xC(t)), where C(t) is such that

C∗(t) =
e

t
2 − e−

t
2

gα

(
it
2

)

where gα(z) = 2αΓ(α + 1)Jα(z)/zα and

Jα(z) =
∞∑

k=0

(−1)kzα+2k

2α+2kk!Γ(α + k + 1)

is the first kind Bessel function of order α. For this case, the lowering operator,
denoted by bα in [6], is given by

σα =
∞∑

k=0

(
(−1)k − 1

)

k!
Bk,αDk,

where the coefficients Bk,α are defined by the relation

e−
t
2

gα

(
it
2

) =
∞∑

k=0

Bk,α

k!
tk.

Here, expansion (3.8) is reduced to the Frappier series [6]

f(z + u) =
∞∑

n=0

σn
αf(u)

n!
Φn,α(z). (3.16)

For α = 1
2
, we have the Taylor series.
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4. Concluding Remarks

In this section, we discuss some problems arising in the theory of polynomials,
and for which the obtained results in this paper can be useful.

1. Connection and linearization problems. Let {Qn}n≥0 and {Rn}n≥0

be two polynomial sets. The so-called connection problem between them asks
to find the coefficients Cm(n) in the expression

Rn(x) =
n∑

m=0

Cm(n)Qm(x).

Let {Qn}n≥0, {Rn}n≥0 and {Sn}n≥0 be three polynomial sets. The so-called
linearization problem asks to find the coefficients Lijk in the expression

Ri(x)Sj(x) =
i+j∑

k=0

LijkQk(x).

The literature on these topics is extremely vast and a wide variety of methods
based on specific properties of the involved polynomials have been devised for
computing the linearization and connection coefficients (see, for instance, [1,
12] and the references therein).

From Theorem 3.1 we derive then a simple and general method to compute
the coefficients Cm(n) and Lijk which consists in putting in (3.2) f = Rn and
f = RiSj, respectively. This approach does not need particular properties of
the polynomials involved in the problem.

2. d-orthogonality and d-dimensional functionals. Let {Qn}n≥0 be a

polynomial set. The corresponding monic polynomial sequence {Q̂n}n≥0 is given

by Qn = λnQ̂n, n ≥ 0, where λn is the normalization coefficient and let {Ln}n≥0

be its dual sequence. Let d be an arbitrary positive integer. {Qn}n≥0 is called a
d-orthogonal polynomial set with respect to the d-dimensional functional L =
t(L0, · · · ,Ld−1) if it fulfils [8,14]




〈Lk, QmQn〉 = 0 , m > dn + k , n ≥ 0,

〈Lk, QnQdn+k〉 6= 0 , n ≥ 0,
(4.1)

for each integer k belonging to {0, 1, . . . , d− 1}.
The orthogonality conditions (4.1) are equivalent to the fact that the sequence

{Qn}n≥0 satisfies a (d + 1)-order recurrence relation [14] which we write in the
monic form

Q̂m+d+1(x) = (x− βm+d)Q̂m+d(x)−
d−1∑

ν=0

γd−1−ν
m+d−νQ̂m+d−1−ν(x) , m ≥ 0, (4.2)

with the initial conditions




Q̂0(x) = 1 , Q̂1(x) = x− β0 and if d ≥ 2 :

Q̂n(x) = (x− βn−1)Q̂n−1(x)− n−2∑
ν=0

γd−1−ν
n−1−νQ̂n−2−ν(x) , 2 ≤ n ≤ d,

(4.3)
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and the regularity conditions

γ0
n+1 6= 0 , n ≥ 0.

One of the problems related to these notions consists in expressing explicitly
the d-dimensional functional L = t(L0, · · · ,Ld−1) if the recurrence relation is
given.

This problem, for the classical case (in Hahn’s sense) was treated by Douak
and Maroni in [5]. A different approach may be deduced from Theorem 1.1 for
the general case.
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