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HOLOMORPHIC FRAMINGS FOR PROJECTIONS IN A
BANACH ALGEBRA
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Abstract. Given a complex Banach algebra, we consider the Stiefel bun-
dle relative to the similarity class of a fixed projection. In the holomorphic
category the Stiefel bundle is a holomorphic locally trivial principal bundle
over a certain Grassmann manifold. Our main application concerns the holo-
morphic parametrization of framings for projections. In the spatial case this
amounts to a holomorphic parametrization of framings for a corresponding
complex Banach space.
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1. Introduction

A fundamental aspect of operator theory concerns the geometry of spaces
of projections in a Banach algebra as considered by several groups of authors
[1], [4], [8], [15], [23], [25], [29]. The techniques involve using certain Grass-
mann manifolds and the various constructions are applicable to a broad class
of operator algebras and associated orbit spaces which need not necessarily be
manifolds in the usual sense (see, e.g., [7]). More specifically, for a given Ba-
nach(able) algebra A, let P (A) denote the set of idempotents of A which can
be considered as abstract projection operators. We then define an equivalence
relation “∼” in P (A) by p ∼ q if and only if pq = q and qp = p. If A is an
algebra of linear operators on a vector space, then p ∼ q if and only if p and
q have the same image. Thus the space Gr(A) = P (A)/ ∼ may be regarded
as the generalization of the Grassmannian of subspaces of a given vector space.
If V (A) denotes the set of proper partial isomorphisms of A, then there is a
natural map Im : V (A) → Gr(A). Restriction to the similarity class Sim(p,A)
of a fixed projection p in A, leads to the Stiefel bundle V (p,A) → Gr(p,A), as
introduced in [8]. Thus the space V (p, A) may be regarded as a manifold of
framings or bases for A, that is well known to be the case in finite dimensions
(see, e.g., [19]). In [8], we showed that both V (p,A) and Gr(p,A) are analytic
Banach manifolds, and V (p,A) → Gr(p,A) is an analytic principal bundle.

In operational calculus and systems control theory it is important to consider
the parametrization of subspaces of a given Banach space within a suitable map-
ping class along with the possible extension to another differentiability class.
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The continuous to smooth case exemplified the main results of [9], [8], the finite
dimensional version having been studied in [12]. Here we discuss the role of
V (p,A) in the complex analytic (holomorphic) category as the title suggests.
Related work pertaining to holomorphic operator–valued functions and fami-
lies of subspaces is the subject of [13], [14], [15], [17], [30], for instance. Our
use of the infinite dimensional Stiefel manifold V (p,A) and the Grassmannian
Gr(p,A), provides a new approach to this subject.

Throughout we denote by L(E, F ), the complex Banach space of bounded
linear operators between complex Banach spaces E and F . When E = F , we
denote by L(E) the resulting complex Banach algebra.

2. The Stiefel Bundle of a Banach Algebra

Let A be a topological algebra with identity 1 with G(A) denoting the group
of units of A. Let P (A) be the set of idempotents in A so that p̂ = 1−p ∈ P (A)
and the map sending x ∈ A to 1−x, is an affine homeomorphic involution of A
which maps P (A) to itself. There is a natural partial order on P (A) where we
say that p ≺ q if qp = p, and therefore “≺ & Â” define an equivalence relation “
∼” on P (A). The resulting set of equivalence classes is called the Grassmannian
of A and is denoted by Gr(A). Gr(A) is a space with the quotient topology due
to the natural quotient map

Im : P (A) −→ Gr(A), (2.1)

which by [8] Proposition 4.1 is an open map (see also [25]).
Let ∗ denote the inner automorphic action of G(A), that is, g ∗ a = gag−1,

for a ∈ A and g ∈ G(A). This action induces an action on Gr(A) where for
x ∈ Gr(A) and g ∈ G(A), we take gx to be the result of the inner automorphic
action of G(A) on Gr(A), such that we have

Im(g ∗ c) = Im(gcg−1) = g Im(c). (2.2)

Definition 2.1. We say that u ∈ A is a partial isomorphism if there exists a
v ∈ A such that uvu = u and vuv = v, in which case we call v an pseudoinverse
for u. In general such a pseudoinverse is not unique. In the following we let
W (A) denote the set of all partial isomorphisms of A.

If u ∈ W (A) has a pseudoinverse v, then clearly v ∈ W (A) with pseudoinverse
u, and it is easy to see that both vu and uv belong to P (A). Even though v is
not uniquely determined by u alone, it is uniquely determined once u, vu and
uv are all specified. If p ∈ P (A), then we take W (p, A) ⊂ W (A) to denote the
subset of all partial isomorphisms u of A having a pseudoinverse v satisfying
vu = p. Likewise, W (A, q) denotes the subset of all partial isomorphisms u of
A having a pseudoinverse v satisfying uv = q. Now for p, q ∈ P (A), we set

W (p,A, q) = W (p,A) ∩W (A, q)

=
{
u ∈ qAp : ∃v ∈ pAq, vu = p and uv = q

}
. (2.3)
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The map Im of (2.1) extends to a well–defined map ImA : W (A) → Gr(A)
which is constant on W (A, q) with value Im(p), as shown in [8, Proposition
5.1].

Recall that x, y ∈ A are similar if x and y are in the same orbit under the
inner automorphic action ∗ of G(A) on A. For p ∈ P (A), we say that the orbit
of p under the inner automorphic action is the similarity class of p and denote
the latter by Sim(p,A), whereby it follows that Sim(p, A) = G(A) ∗ p.

Definition 2.2. Let u ∈ W (A). We call u a proper partial isomorphism if
for some W (p,A, q), we have u ∈ W (p,A, q) where p and q are similar.

Let G(p) = G(pAp) and let V (A) be the set of all proper partial isomorphisms
of A. If p ∈ P (A), then we take V (p,A) to denote the set of all proper partial
isomorphisms of A having a pseudoinverse v ∈ W (q, A, p) with q ∈ Sim(p,A).
With regards to (2.3) this condition is expressed by

V (p,A) :=
⋃

q∈Sim(p,A)

W (p,A, q). (2.4)

Let Gr(p,A) denote the image of Sim(p,A) under the map Im in (2.1), thus
defining Gr(p,A) as the Grassmannian naturally associated to V (p,A).

Henceforth, we specialize A to be a complex Banach algebra with identity 1.
Accordingly, G(A) is taken to be the complex Banach Lie group of units of A.
For the theory of fiber bundles in the Banach space category, see, e.g., [6], [7],
[11]. The particular case of holomorphic Banach bundles is considered in [3],
[21], [30]. We proceed to draw upon the main results of [8] where ‘analytic’ is
now replaced by ‘holomorphic’ for those objects to which the term applies.

The first observation in the holomorphic category concerns analyticity of the
map Im in (2.1) and follows directly from [8, Propositions 4.1, 4.2 and 7.1].

Proposition 2.1. Im : P (A) −→ Gr(A) is a surjective holomorphic equiv-
ariant open map which admits local holomorphic sections. For a given p ∈ P (A),
the fiber over Im(p) is the linear flat p + pAp̂.

As shown in [8], V (p,A) is a complex Banach submanifold of A, and the
map Im |V (p,A) is a continuous open map which induces a homeomorphism
V (p,A)/G(p) ∼= Gr(p, A). The manifold Gr(p,A) is open and closed in Gr(A)
and Gr(A) is a discrete union of these (see below) .

Theorem 2.1 ([8, Theorem 6.1]). The Grassmannian Gr(p,A) is a complex
Banach manifold modeled on the space p̂Ap and

G(p) ↪→ V (p,A)
Im−→ Gr(p,A), (2.5)

is a locally trivial holomorphic principal G(p)–bundle. Furthermore, Gr(A) is
a complex Banach manifold, the action of G(A) on Gr(A) induced by the inner
automorphic action of G(A) on A, is a holomorphic action, and Im : V (p,A) →
Gr(p,A), is a G(A)–equivariant map where G(A) acts on the left of V (p,A) by
multiplication.
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Next we recall the notion of a complex homogeneous Banach space following,
e.g., [27], [15].

Definition 2.3. Let M be a complex Banach manifold and G a complex
Banach Lie group acting on M via ν : G×M → M . We say that (G, ν,M) is
a complex Banach homogeneous space if:

(1) The map ν : G×M → M is holomorphic.
(2) Consider the map νx : G → M which satisfies νx(g) = ν(g, x), for

x ∈ M . Then there exist local holomorphic sections whose domains
cover M and map biholomorphically onto a complex submanifold N of
G. Additionally, the isotropy subgroup Gx = (νx)−1(x) is a complex
Banach Lie subgroup of G.

Let A[p] denote the commutant of p in A. On recalling p̂ = 1− p, we have

A[p] = pAp + p̂Ap̂, (2.6)

and it is straightforward to see that A[p] + pAp̂ = pAp + Ap̂, and A([p]) is
analytically complemented in A by p̂Ap+pAp̂. From these relations, we deduce
the following Banach Lie subgroups of G(A) :

(i) For each p ∈ P (A), G(Im(p)) := G(A[p] + pAp̂) = G(pAp + Ap̂) is the
isotropy subgroup of Im(p) in Gr(p,A).

(ii) For each p ∈ P (A), G(A[p]) = A[p] ∩G(A) is the isotropy subgroup for
the inner automorphic action of G(A) on P (A).

(iii) H(p) = (p + Ap̂) ∩ G(A) is the isotropy subgroup for the analytic (left)
multiplication of G(A) on V (p,A) and H(p) as an open subset of p+Ap̂,
is a complex Banach submanifold of G(A).

In particular, H(p) ⊂ G(Im(p)) ⊂ G(A) is an inclusion of Banach Lie sub-
groups.

Theorem 2.2. As complex Banach homogeneous spaces, the Grassmannian
Gr(p,A) = G(A)/G(Im(p)), and the Stiefel manifold V (p,A) = G(A)/H(p).
Moreover, there exists a holomorphic locally trivial fibration

G(Im(p))/H(p) ↪→ G(A)/H(p) −→ G(A)/G(Im(p)). (2.7)

Proof. The first statement regarding Gr(p,A) was established in [8, Proposition
7.4], the main point being that the isotropy subgroup G(Im(p)) is a complex
Banach analytic Lie subgroup of the complex Banach Lie group G(A). Further-
more, the action of G(A) on Gr(p,A) is analytic (holomorphic). Consequently,
the requirements of Definition 2.3 (1) and the last condition in (2), are satis-
fied. The remainder of (2) in Definition 2.3, is implied by the existence of local
analytic sections and local analytic diffeomorphisms (biholomorphisms) from
Gr(p,A) back to G(A), as shown in [8, Theorem 7.1] (cf. [27, Proposition 1.5]).

We have already noted that V (p,A) is a complex Banach manifold. By [8,
Lemma 5.1], the left action of G(A) on V (p,A) is transitive and analytic. On the
other hand, the right regular representation of A on itself determines an idem-
potent continuous linear (analytic) map R(p) : A → A. Now R(p̂) is continuous,
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and (R(p), R(p̂)) : A → Ap × Ap̂ is a linear isomorphism. But (R(p), R(p̂))−1

is the restriction of the addition map to Ap × Ap̂, and so (R(p), R(p̂)) is a
linear homeomorphism. If πA : Ap × Ap̂ → Ap, is the first factor projection,
then πA is open. Hence R(p) = πA(R(p), R(p̂)) is open onto its image Ap,
and its kernel (Ap̂) splits A. But since G(A) is open in A, it follows that
νp = R(p)|G(A) : G(A) → V (p,A) = G(A) · p is an open map.

Now for any g ∈ G(A), we have Tgν
p = R(p) and the kernel of Teν

p splits
TeG(A), since we have shown R(p) is onto, the image of Tgν

p clearly splits
TgpV (p,A). Thus the hypotheses of [7], Corollary 5.6 (3) are satisfied, and
therefore imply the equivalent properties: νp admits a local holomorphic sec-
tion, (G(A), νp, V (p,A)) is a locally trivial holomorphic principal bundle with
structure group H(p) which is a complex submanifold of G(A), and H(p) is
a complex Banach Lie subgroup of G(A). So it follows that the requirements
of Definition 2.3 are fulfilled and V (p,A) = G(A)/H(p) is a complex Banach
homogeneous space. The remaining assertion follows from the fact that H(p) is
contained as a closed subgroup in G(Im(p)) and thus induces the holomorphic
fibration (2.7).

Theorem 2.3. The following properties hold:

(1) P (A) is a discrete union of the complex Banach homogeneous spaces
G(A)/G(A[p]).

(2) The holomorphic bundle Im : P (A) → Gr(A) restricts to define a holo-
morphic locally trivial fibration

G(Im(p))/G(A[p]) ↪→ G(A)/G(A[p]) −→ G(A)/G(Im(p)). (2.8)

(3) Gr(A) is a discrete union of the complex Banach homogeneous spaces
G(A)/G(Im(p)). Equivalently, Gr(A) is a discrete union of the Gr(p, A).

(4) Im : P (A) → Gr(A) is a holomorphic locally trivial bundle.

Proof. Firstly, we recall that G(A) acts transitively and holomorphically on
P (A) by its inner automorphic action. We have noted in (ii) above that for each
p ∈ P (A), G(A[p]) is the isotropy subgroup of p under the inner automorphic
action of G(A). Since A([p]) is analytically complemented in A by p̂Ap + pAp̂,
the same principles used proving Theorem 2.2 together with [8], Proposition
4.1, imply (1)–(4).

3. Holomorphic Parametrization by Stein Spaces

In this section we will combine Theorems 2.2 and 2.3 with a version of the Oka
principle in [3] valid in infinite dimensions (cf. [16]). Concerning the definition
and properties of Stein spaces we refer to [18].

Theorem 3.1 ([3, Theorem 8.4]). Let X be a Stein space and let P → X
be a holomorphic principal bundle. Let Y be a closed subvariety of X and U
a holomorphically convex domain in X. If a continuous section f : X → P is
such that f |Y = g is holomorphic, then f is homotopic to a holomorphic section
in the space of continuous sections that induce g on Y . If f : U → P, g : Y →
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P , are holomorphic sections such that f |Y ∩ U = g|Y ∩ U , then f can be
approximated by holomorphic sections h : X → P with h|Y = g (uniformly on
compacta in U) if and only if it can be approximated by continuous sections h
with h|Y = g.

Remark 3.1. Observe that Theorem 3.1 requires the bundle to be a princi-
pal bundle. There does not seem to be an analogous result for more general
holomorphic fiber bundles in the infinite dimensional setting.

Together with Theorems 2.2 and 2.3, Theorem 3.1 will provide a straight-
forward development of results concerning the holomorphic parametrization of
projections in A by Stein spaces. However, we will also need a particular con-
cept which combines the neighborhood extension property of [6] with the section
extension property of [5]:

Definition 3.1. Let ξ → X be a bundle over a space X. We say that ξ has
the absolute extension property (AEP), if for every closed set Y ⊂ X, and every
section s ∈ Γ(Y, ξ), there exists a section t ∈ Γ(X, ξ) with t|Y = s.

Lemma 3.1. Let ξ→X be a bundle over a paracompact Hausdorff space X.

(1) If ξ locally has the AEP, then ξ has the AEP (globally).
(2) In particular, if ξ is locally trivial with fiber a contractible Banach man-

ifold M topologically embedded as a neighborhood retract in a Banach
space E, then ξ has the AEP.

Proof. Part (1) follows from [6, Corollary 3.2]. To establish (2) we observe that
by (1) and the fact ξ is locally trivial, we need only prove it in the case that ξ
is trivial. So let Y ⊂ X be a closed subset and let f : Y → ξ be a continuous
section regarded as a continuous map f : Y → M . By hypothesis, f extends to
a continuous section g : X → E. Let T be an open neighborhood of M in E
that retracts back onto M . Since g−1(T ) is open and Y ⊂ g−1(T ), we obtain a
neighborhood extension of f to some open set V containing Y . In other words,
there exists a continuous map h : V → M extending f . Using the normality of
X, we have a continuous function r : X → [0, 1] such that r|Y = 1, and r = 0
outside a closed neighborhood Z of X which is contained in V .

Next, we choose a contracting homotopy H : M × [0, 1] → M such that
H(x, 1) = x, and H(x, 0) = c, a constant. Then we form the map H(h, r) :
V → M , which extends f to V . It takes the constant value c outside of the
neighborhood Z and hence extends to all of X on specifying the value c at the
points of X\Z. In this way, f achieves a continuous extension to all of X, and
thus represents a global section f : X → ξ.

Remark 3.2. Regarding (2) of Lemma 3.1, we remark that the main result
of [10] provides a wide class of Banach manifolds realizable as embedded open
subsets of a Banach space on which they are modeled. Recall that G(A) is open
in A as a Banach submanifold.

Henceforth, when we take X to be a Stein space, we will always assume it is
paracompact and Hausdorff.
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Theorem 3.2. Let G be a complex Banach Lie group and H,K closed com-
plex Banach Lie subgroups of G with H ⊂ K. Suppose X is a Stein space and
ψ : X → G/K is a holomorphic map. Let Y be a closed subvariety of X and U
a holomorphically convex (open) domain in X.

(1) Suppose there exists a continuous map f : X → G/H lifting ψ through
G/H → G/K, such that g = f |Y is holomorphic. Then in order that
f is homotopic to a holomorphic map in the space of continuous maps
lifting ψ through G/H → G/K, that restrict to g on Y , it suffices (∗)
that f admits a continuous lift f̃ through G → G/H and g̃ = f̃ |Y is
holomorphic.

(2) Suppose η : U → G/H, µ : Y → G/H, are holomorphic lifts of ψ such
that η|Y ∩ U = µ|Y ∩ U and they are approximated by continuous lifts
h (of ψ) with h|Y = µ. Then in order for η to be approximated by
holomorphic lifts h : X → G/H with h|Y = µ (uniformly on compacta
in U) it suffices (∗∗) that η, µ admit lifts η̃ : U → G, µ̃ : Y → G with η̃
continuous and µ̃ holomorphic, and such that η̃|Y ∩ U = µ̃|Y ∩ U .

(3) If H is contractible and is embedded as a neighborhood retract of a Ba-
nach space, then (∗) and (∗∗) hold.

Proof. Firstly, in view of [18, (Ch. V, Theorem 1)], the conditions on Y and U
imply that each of these inherit the Stein property as subsets of X. With the
intention of applying Theorem 3.1, we will need to consider the holomorphic
principal bundles PK = (G, πK , G/K, K) and PH = (G, πH , G/H, H).

To establish (1), consider the lift f̃ : X → G of f . We can view f̃ as
a continuous section of the holomorphic principal bundle ψ∗PK → X, and
g̃ = f̃ |Y holomorphic. By Theorem 3.1, there exists a homotopy f̃t : X →
G, t ∈ [0, 1], satisfying f̃t|Y = g̃, f̃0 = f̃ , and f̃1 is holomorphic . Each of these
can then be projected to G/H.

In the case of (2), we start by considering µ̃ : Y → G as a holomorphic section
of the holomorphic principal bundle µ∗PH → Y . At the same time µ̃ defines a
holomorphic section over Y ∩U of η∗PH → U . Next, we view η̃ as a continuous
section of η∗PH → U , such that µ̃|Y ∩ U = η̃|Y ∩ U is holomorphic. Applying
Theorem 3.1 relative to η∗PH and to µ̃|Y ∩U , we find that η̃ is homotopic to a
holomorphic section, still denoted by η̃, that agrees with µ̃ on Y ∩ U . Thus by
viewing µ̃ and η̃ as holomorphic sections of ψ∗PK over Y and U respectively,
(2) follows from Theorem 3.1.

We proceed to establish (3) in view of the assumptions on H. In the case of
(∗), we observe that g∗PH → Y is a holomorphic bundle. Thus by Theorem
3.1, g̃ : Y → G viewed as a section, is homotopic to a holomorphic section still
denoted by g̃. Now f ∗PH → X is a principal bundle whose fiber is contractible.
Applying Lemma 3.1 (2) to f ∗PH , we can extend g̃ to a continuous lift f̃ of f ,

such that g̃ = f̃ |Y is holomorphic.
Next we deal with (∗∗). By Theorem 3.1, we obtain a holomorphic section

of µ∗PH → Y (as µ is holomorphic by hypothesis) which provides µ̃. Because
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Y ∩U is closed in U and the latter is paracompact since it is open in X, we can
apply Lemma 3.1 (2) to extend µ̃ from Y ∩U to all of U . Then Theorem 3.1 is
applied to η∗PH → U to obtain µ̃ homotopic to a holomorphic lift η̃ relative to
Y ∩ U , and with the subsequent property that η̃|Y ∩ U = µ̃|Y ∩ U .

Remark 3.3. Recall that by [22], the general linear group of an infinite di-
mensional Hilbert space is contractible. Further examples of Banach spaces
having contractible general linear groups, may be found in [24].

Corollary 3.1. Suppose G(A[p]) is contractible. Let ψ : X → Gr(A) be a
holomorphic map. If there exists a continuous map f : X → P (A) lifting ψ
through P (A) → Gr(A) such that g = f |Y is holomorphic, then f is homotopic
to a holomorphic map in the space of continuous maps lifting ψ through the map
P (A) → Gr(A) that induce g on Y .

Proof. Since we intend to prove this componentwise, it is sufficient to assume
X is connected. We have already noted that G(A[p]) is open as a subset of the
Banach subalgebra A[p]. With regards to Theorem 2.3 and in particular (2.8),
we view ψ as lifted through

G(A)/G(A[p]) = G/H −→ G(A)/G(Im(p)) = G/K.

Then since P (A) (respectively, Gr(A)) is a discrete union of the G/H (re-
spectively, G/K) and H = G(A[p]) is assumed contractible, the result follows
directly from Theorem 3.2.

The next corollary pertains to a parametrization of the holomorphic framing
of projections in P (A) implemented via the Stiefel manifold V (p,A).

Corollary 3.2. Suppose H(p) is contractible. Let ψ : X → Gr(p,A) be a
holomorphic map. If there exists a continuous map f : X → V (p, A) lifting
ψ through V (p,A) → Gr(p, A) such that g = f |Y is holomorphic, then f is
homotopic to a holomorphic map in the space of continuous maps lifting ψ
through the map V (p,A) → Gr(p,A) that induce g on Y .

Proof. Likewise, we have noted that H(p) is also open as a subset of p + Ap̂.
With regards to Theorem 2.2 and in particular (2.7), we view ψ as lifted through

G(A)/H(p) = G/H −→ G(A)/G(Im(p)) = G/K,

and using the assumed contractibility of H = H(p), the result follows directly
from Theorem 3.2.

4. The Banach Grassmannian Gr(F, E)

To exemplify matters, let us set A = L(E) where E is a complex Banach
space admitting a decomposition

E = F ⊕ F c, F ∩ F c = {0}, (4.1)

where F, F c are closed subspaces of E. Here we choose p ∈ P (E) = P (L(E)),
such that p ∈ P (E) and consequently Gr(A) consists of all such closed splitting
subspaces.
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Next, consider the subspace

W̃ (p,A) = W̃ (F, E) ⊆ L(F, E), (4.2)

consisting of injective linear maps T with closed images which split E. So
if T ∈ W̃ (F, E), then T is injective and there is a (continuous) projection
q ∈ P (E) such that for T (F ) = q(E), we have

E = Im T ⊕Ker q, Im T ∩Ker q = {0}. (4.3)

Following [8], [9] there is a complex submanifold V(p, E)⊂W̃ (F,E) defined by

V(p, E) :=
{
T ∈ W̃ (F,E) : ∃q ∈ Sim(p,L(E)), q(E) = T (F )

}
. (4.4)

The assignment T 7→ Im T , defines a holomorphic locally trivial GL(F )-
principal bundle

GL(F ) ↪→ V(p, E) −→ Gr(F, E), (4.5)

where Gr(F, E) denotes the Banach Grassmannian of closed subspaces W which
split E and are similar to F (see [9], [28], [30]).

Observe that our V (p,L(E)) is essentially the same as V(p, E), because a
member of V(p, E) is a linear homomorphism of F = p(E) onto a closed splitting
subspace of E similar to F , whereas u ∈ V (p,L(E)) belongs to L(E). In other
words, for u ∈ V (p,L(E)), we have u|F ∈ V(p, E). It follows that the restriction
map which sends u to its restriction to F , defines a biholomorphic map

ϕ : V (p,L(E)) −→ V(p, E) = V (p,L(E))|F , (4.6)

where the inverse is simply the composition with p. For V(p, E), the map
to Gr(F, E) is the assignment of T to its image Im T , as we have noted.
Whereas for V (p,L(E)), we have the map Im onto Gr(p,A) where the images
are identified. In either event, the base space is the same Banach Grassmannian
Gr(F, E) = Gr(p,L(E)), and in this instance the fibration (2.5) with G(p) =
GL(F ) is identified with (4.5). Thus the assignment of pairs (p,L(E)) 7→ (F,E),
may aptly be called a spatial correspondence such that the following diagram
commutes :

V (p,L(E))
ϕ−−−→ V(p, E)

Im

y
yIm

Gr(p,L(E))
=−−−→ Gr(F,E)

(4.7)

Example 4.1. We may consider Fredholm operators Fred(E, E ′) for Banach
spaces E and E ′, as based on the notion of “right and left aggregation”; we
refer to [30] for details. An operator T ∈ Fred(E) is stable under compact
perturbations and there is a well-defined index given by Ind(T ) = dim Ker T −
codim Im T . Ind(T ) is constant on connected components and is invariant
under compact perturbations. For compositions, the index satisfies Ind(T1T2) =
Ind(T1) + Ind(T2) and there is an induced homomorphism Ind : Fred(E) → Z.
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With regards to (4.1), let

Ĝ ⊂
{ [

T1 ∗
T2

]
: T1 ∈ Fred(F ), T2 ∈ Fred(F c)

}
,

be a Banach Lie group that generates a Banach subalgebra B ⊂ A = L(E),

but with possibly a different norm. Suppose that Ĝ acts analytically on Gr(B),

whereby Ĝr(B) denotes a typical orbit. Following [7, Corollary 5.6], the map

νx : Ĝ → Ĝr(B) admits a local analytic section if and only if Ĝr(B) is a
complex Banach submanifold of Gr(B), and νx is a submersion. Fixing q ∈
P (B), let Ĝr(q, B) = Ĝr(B) ∩ Gr(q, B), and let Ĝra(B) denote a connected

component of Ĝr(B) for which Ind T1 = a. Accordingly, we define Ĝra(q, B) =

Ĝra(B)∩Gr(q, B). The restriction Va(q, B) = V(q, B)| Ĝra(q, B), thus provides

a framing for elements of Ĝra(q, B).

Example 4.2. When E = H is a complex separable Hilbert space, the
Ĝr(q, B) can be identified with the restricted Grassmannians Gres(H) in [26].
Here H admits an orthogonal direct sum decomposition H = H+ ⊕H−, where
H± are closed subspaces, and this decomposition is specified by a unitary opera-
tor J : H → H such that J |H± = ±1. We consider closed splitting subspaces W
that are commensurable with H+ (that is, for which W ∩H+ has finite codimen-
sion in both W and H+). Then the relevant algebra is B = LJ(H), the Banach
algebra of bounded linear operators T : H → H such that [J, T ] is a Hilbert–
Schmidt operator. There is a norm ‖ ‖J defined by ‖T‖J = ‖T‖ + ‖[J, T ]‖2

and with the topology induced by ‖ ‖J , the group of units G(B) is a complex

Banach Lie group (see [26]). In particular, the Ĝra(q, B) are identified with the
disconnected pieces of Gres(H) and Va(q, B) is a manifold of ‘admissible bases’
for the latter.

Remark 4.4. Consider a unital C*-algebra A and the standard (free count-
able dimensional) Hilbert module HA over A. Now let B denote the A-linear
bounded operators with A-linear bounded adjoints. Then B is a Banach al-
gebra for which G(B) retracts onto the subgroup of unitaries U(B) = U(HA).
Following [20], there is a restricted Grassmannian Gres(HA) which is a Banach
manifold modeled on the Banach space K(HA), and whose unitary and topologi-
cal structures are describable in a way similar to [26]. The structural properties
of Gres(HA) have a significant bearing on the Riemann–Hilbert problem for
analytic vector functions [2], [20], elliptic transmission problems [20], and the
K-theory of C*-algebras [31] (see also references therein). It is possible that the
Stiefel manifolds V (q, B) may have potential applications to these questions.

In the case of the Banach algebra A = L(E), we have the following interpre-
tation of Corollary 3.2 in terms of a holomorphic parametrization of the closed
splitting subspaces W and their bases where the latter are regarded as elements
of V(p, E) :
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Corollary 4.3. Suppose H(p) is contractible. Let ψ : X → Gr(F,E) be
a holomorphic map parametrizing closed splitting subspaces W of E by X. If
there exists a continuous parametrization of bases for W under ψ, as given by a
continuous map f : X → V(p, E) lifting ψ through Im in (4.7) such that g = f |Y
is holomorphic, then such a parametrization is homotopic to a holomorphic
parametrization within the space of continuous maps lifting ψ through Im that
induce g on Y .

Observe that this latter result is independent of the actual choice of bases
(‘unconditional’, whatever), but does depend on the lift to V(p, E) which con-
sequently determines the type of basis furnished to each W ∈ Gr(F, E), via the
basis assigned to F .

5. The Universal Bundle and the Gauss Map

Continuing with A = L(E), let ρ denote the natural left action of G(p) on F
via evaluation which is analytic. For x ∈ V(p, E), a ∈ F and g ∈ G(p), consider
the action given by

(x, a)g = (x · g, ρ(g−1)a). (5.1)

Next we will give a specific realization of the quotient of V(p, E)×F under the
action in (5.1).

Proposition 5.1. The space

E(F, E) :=
{
(W, v) ∈ Gr(F,E)× E : v ∈ W

}
⊂ Gr(F,E)× E

= V(p, E)×ρ F, (5.2)

defines a holomorphic Banach bundle E(F, E) → Gr(F,E), namely the universal
(or tautological) bundle whose fiber over W ∈ Gr(F, E) is simply the subspace
W itself. Furthermore, there exists a holomorphic Banach bundle E(L(E)) →
Gr(L(E)), satisfying E(L(E))|Gr(F, E) = E(F,E).

Proof. Firstly, we can always find a local holomorphic section s of Im : P (E) →
Gr(L(E)) and hence a projection pW = s(W ), that provides a local holomorphic
splitting

Gr(F,E)× E ¿ E(F,E)

(W, v) 7→ pW (v).
(5.3)

The existence of such a local holomorphic splitting suffices to show that E(F, E)
is a complex submanifold and a holomorphic subbundle of Gr(F, E)×E where
a typical fiber is simply the subspace W itself. We also have the assignment

V(p, E)× F −→ E(F,E)

(T, v) 7→ (T (F ), T (v)),
(5.4)

as induced by (5.1). Now using [8, Proposition 5.2] together with the fact
that the inner automorphic action on P (L(E)) and the map Im admit local
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holomorphic sections, (5.4) also admits local holomorphic sections. Thus the
second equality in (5.2) follows. Since Gr(A) = Gr(L(E)) consists of closed
splitting subspaces which split E and Gr(A) is a discrete union of spaces of the
type Gr(F,E), then essentially the same definition as in (5.2) can be used to
define E(L(E)) tautologically.

We describe how the Grassmannian Gr(p,A) figures in an infinite dimensional
Gauss map construction in a style that may be applicable to the theory of
operator-valued functions.

Theorem 5.1. Let X be a complex submanifold of a complex Banach space
E. Then the following hold.

(1) There exists a well-defined holomorphic Gauss map ψ : X → Gr(L(E)),
which when X is connected, maps X holomorphically into Gr(F, E).

(2) For each x ∈ X, the tangent space TxX is a closed splitting complex
subspace of E.

(3) There exists a holomorphic Banach bundle isomorphism TX ∼=
ψ∗E(L(E)), and likewise when X is connected, we have TX ∼= ψ∗E(F, E).

Remark 5.1. If X above is finite dimensional, then X is a Stein manifold by
[30, Theorem 3.5].

Proof. Let U be an open neighborhood of x ∈ X together with a biholomor-
phic map f : U → V , where V is an open subset of some complex Banach
space. Given that X is a complex submanifold, we can extend f locally to a
holomorphic map of an open subset W ⊂ E, by suitably shrinking U, V and W
should this be necessary, and such that W ∩X = U . In this way, we produce a
holomorphic map h : W → V , such that h|U = f |U .

Now we set r = f−1 ◦ h. Then r : W → U is a holomorphic retraction
of W onto U and its derivative r′ : W → A = L(E), is a holomorphic map.
For x ∈ W ∩ X, we have by the chain rule that r′(x) is an idempotent whose
image is TxX. Thus p = r′(x) and 1 − p are linear idempotents in A, and
consequently there exists a well–defined holomorphic map rU : U → P (A). On
recalling the map Im : P (A) → Gr(A) in Proposition 2.1, we now compose to
produce a holomorphic map ψ : X → Gr(A), such that ψ|U = Im(rU) and is
independent of the local retraction r. We recall that Gr(p,A) is both open and
closed in Gr(A) and the latter is a discrete union of the Gr(p,A). So when
X is connected, ψ maps X holomorphically into Gr(p,A) = Gr(F, E). Thus
the tangent space TxX = ψ(x) is realized as an element of Gr(L(E)) where we
recall that the latter consists of closed subspaces which split E. Likewise when
X is connected, TxX = ψ(x) is realized as an element of Gr(F,E) by the above
reasoning.

Finally, consider the tangent bundle Π : TX → X and let v ∈ TX. The
assignment v 7→ (ψ(Π(v)), v) is holomorphic and defines a holomorphic Banach
bundle map TX → E(L(E)) that induces a linear homeomorphism fiberwise.
Then there is an obvious unique factorization defining a bundle isomorphism
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with the holomorphic Banach bundle ψ∗E(L(E)). Consequently, since the fiber
over x of ψ∗E(L(E)) is the (complex) subspace determined by ψ(x), we see that
it is simply the subspace TxX.
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22. N. H. Kuiper, The homotopy type of the unitary group of Hilbert space. Topology
3(1965), 19–30.

23. M. Martin and N. Salinas, Differential geometry of generalized Grassmann manifolds
in C∗-algebras. Operator theory and boundary eigenvalue problems (Vienna, 1993), 206–
243, Oper. Theory Adv. Appl., 80, Birkhaüser, Basel, 1995.
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